

On the Parameterized Complexity of SEMITOTAL DOMINATING SET on Graph Classes

Lukas Retschmeier

Theoretical Foundations of Artificial Intelligence School of Computation Technical University of Munich

February 28th, 2023

Lukas Retschmeier

Motivation

Theory

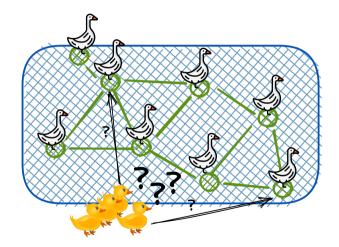
Landscape

W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Poforonoos

Quack!



Lukas Retschmeier

Motivation

Theory

Landscape

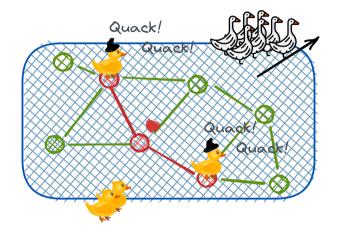
hardnes Split Bipartite Kernel Definitions Rule 1 Rule 2

Rule 3 Kernel Siz

Conclusions

References

Quack!



Lukas Retschmeier

Motivation

Theory

andscape

W[2] hardnes Split Bipartite

Cernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Our Plan for Today

- Motivation
- 2 Theory

3 Landscape

- W[2] hardness
 Split
 Bipartite
- 6 Kernel
 - Definitions Rule 1

Rule 2

- Rule 3 Kernel Size
- 6 Conclusions

Lukas Retschmeier

Motivation

Theory

Landscape

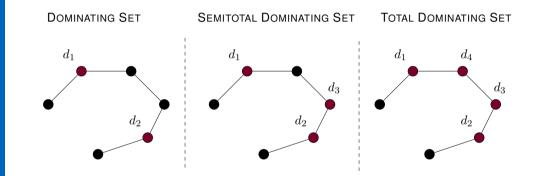
W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusio

Conclusion

References

Example: $\gamma(G) < \gamma_{t2}(\mathbf{G}) < \gamma_t(G)$



Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Motivation

SEMITOTAL DOMINATING SET

Input Question Graph $G = (V, E), k \in \mathbb{N}$ Exists ds $D \subseteq V$ with $|D| \leq k$ such that $\forall d_1 \in D : \exists d_2 \in D \setminus \{d_1\}$ with $d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{t2}(G)$.
- Observation: $\gamma(G) \leq \gamma_{t2}(\mathbf{G}) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Motivation

SEMITOTAL DOMINATING SET

Input Question Graph $G = (V, E), k \in \mathbb{N}$ Exists ds $D \subseteq V$ with $|D| \leq k$ such that $\forall d_1 \in D : \exists d_2 \in D \setminus \{d_1\}$ with $d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{t2}(G)$.
- Observation: $\gamma(G) \leq \gamma_{t2}(\mathbf{G}) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Motivation

SEMITOTAL DOMINATING SET

Input Question Graph $G = (V, E), k \in \mathbb{N}$ Exists ds $D \subseteq V$ with $|D| \le k$ such that $\forall d_1 \in D : \exists d_2 \in D \setminus \{d_1\}$ with $d(d_1, d_2) \le 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{t2}(G)$.
- Observation: $\gamma(G) \leq \gamma_{t2}(\mathbf{G}) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Motivation

SEMITOTAL DOMINATING SET

Input Question Graph $G = (V, E), k \in \mathbb{N}$ Exists ds $D \subseteq V$ with $|D| \leq k$ such that $\forall d_1 \in D : \exists d_2 \in D \setminus \{d_1\}$ with $d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{t2}(G)$.
- Observation: $\gamma(G) \leq \gamma_{t2}(\mathbf{G}) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Betschmeier

Theory

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees, ...

Betschmeier

Theory

Parameterized Complexity

NP-hard? We expect problem to be at least exponential

- Idea: Limit combinatorial explosion to some aspect of the problem
- **Goal:** Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for **some** parameter k
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees, ...

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees, ...

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusio

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ...

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusio

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ... f possible, the problem is **fixed-parameter tractable**.

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusio

Conclusions

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ... If possible, the problem is **fixed-parameter tractable**.

Lukas Retschmeier

Motivation

Theory

Landscape

- W[2] hardnes: Split Bipartite
- Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

- Class NP splits into whole hierarchy W[i] in parameterized setting
- Problems at least W[1]-hard probably fixed-parameter intractable
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Betschmeier

Theory

- Class **NP** splits into whole hierarchy W[i] in parameterized setting ۲

Lukas Retschmeier

Motivation

Theory

Landscape

- W[2] hardness Split Bipartite
- Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

- Class NP splits into whole hierarchy W[i] in parameterized setting
- Problems at least W[1]-hard probably fixed-parameter intractable
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Motivation

Theory

Landscape

- W[2] hardness Split Bipartite
- Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

- Class NP splits into whole hierarchy W[i] in parameterized setting
- Problems at least W[1]-hard probably fixed-parameter intractable
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Motivation

Theory

Landscape

- W[2] hardness Split Bipartite
- Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

- Class NP splits into whole hierarchy W[i] in parameterized setting
- Problems at least W[1]-hard probably fixed-parameter intractable
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Motivation

Theory

andscape

W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Complexity Landscape I

Graph Class	DOMINATING SET		SEMITOTAL DOMINATING SET		TOTAL DOMINATING SET	
	classical	Parameterized	classical	Parameterized	classical	Parameterized
bipartite	NPc [4]	W[2] [40]	NPc [26]	W[2] (We)	NPc [33]	?
line graph of bipartite	NPc [29]	?	NPc [19]	?	NPc [36]	?
circle	NPc [27]	W[1] [7]	NPc [28]	?	NPc [36]	W[1] [7]
chordal	NPc [6]	W[2] [40]	NPc [26]	W[2] (We)	NPc [38]	W[1] [11]
s-chordal , $s > 3$	NPc [34]	W[2] [34]	?	?	NPc [34]	W[1] [34]
split	NPc [4]	W[2] [40]	NPc [26]	W[2] (We)	NPc [38]	W[1] [11]
3-claw-free	NPc [14]	FPT [14]	?	?	NPc [36]	?
t-claw-free, $t > 3$	NPc [14]	W[2] [14]	?	?	NPc [36]	?
chordal bipartite	NPc [37]	?	NPc [26]	?		P [15]
planar	NPc [20]	FPT [2]	NPC	FPT (We)	NPC	FPT [21]
undirected path	NPc [6]	FPT [18]	NPc [25]	?	NPc [32]	?
dually chordal	P [8]			?1		P [31]
strongly chordal	P [17]			P [41]	NPc [17]	
AT-free	P [30]			P [28]	P [30]	
tolerance	P [23]			?	?	
block	P [17]			P [25]	P [10]	
interval	P [12]			P [39]	P [5]	
bounded clique-width	P [13]			P [13]	P [13]	
bounded mim-width	P [3, 9]			P [19]	[19] P [3, 9]	

Lukas Retschmeier

Motivation

Theory

Landscape

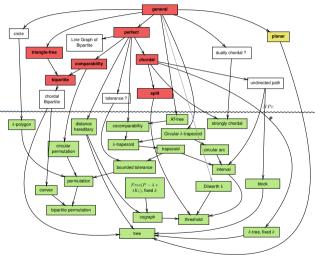
W[2] hardnes Split Bipartite Kernel Definitions Rule 1

Rule 2

Rule 3

Conclusions

References



٦Л

Retschmeier

Master's Thesis

Presentation

Theory

Landscape

W[2] hardness

Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Warmup: Intractability Results

W[2]-hard on split, chordal and bipartite graphs

• Split Graph: G = Clique + IndependentSet

Lukas Retschmeier

Motivation Theory Landscape

Split Bipartite Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusio

Split Graphs

SEMITOTAL DOMINATING SET on *split* and *chordal* graphs is W[2]-hard

Proof by fpt-reduction from DOMINATING SET on split graphs: () Observe: Any ds *D* directly admits a sds *D*'.

- 2 Length of longest shortest path exactly 3
- 3 If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motivation Theory Landscape

hardnes: Split Bipartite Kernel Definitions Rule 1

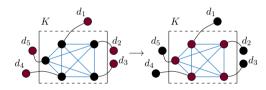
Rule 2 Rule 3 Kernel Size

Conclusions

References

Split Graphs

SEMITOTAL DOMINATING SET on *split* and *chordal* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on split graphs:

() Observe: Any ds D directly admits a sds D'.

- 2 Length of longest shortest path exactly 3
- 3 If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motivation Theory Landscape

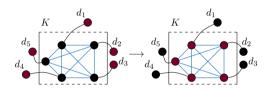
VV [2] hardnes Split Bipartite Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Jonetusion

Split Graphs

SEMITOTAL DOMINATING SET on *split* and *chordal* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on split graphs: 1 Observe: Any ds *D* directly admits a sds *D*'.

2 Length of longest shortest path exactly 3

- 3 If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motivation Theory Landscape

VV [2] hardnes Split Bipartite Kernel

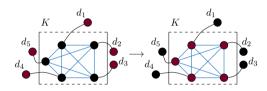
Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

leferences

Split Graphs

SEMITOTAL DOMINATING SET on *split* and *chordal* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on split graphs:

- **1 Observe**: Any ds D directly admits a sds D'.
- 2 Length of longest shortest path exactly 3
- 3) If $d \in (I \cap D)$, flip into K
- 4 Parameter k' = k

Lukas Retschmeier

Motivation Theory Landscape

hardnes split Bipartite

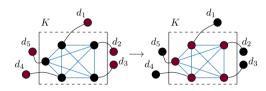
Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Split Graphs

SEMITOTAL DOMINATING SET on *split* and *chordal* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on split graphs:

- **1 Observe**: Any ds D directly admits a sds D'.
- 2 Length of longest shortest path exactly 3
- **3** If $d \in (I \cap D)$, flip into *K*
- 4 Parameter k' = k

Lukas Retschmeier

Motivation Theory Landscape

hardnes Split Bipartite

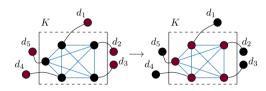
Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Split Graphs

SEMITOTAL DOMINATING SET on *split* and *chordal* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on split graphs:

- **1 Observe**: Any ds D directly admits a sds D'.
- 2 Length of longest shortest path exactly 3
- **3** If $d \in (I \cap D)$, flip into *K*
- 4 Parameter k' = k

Lukas Retschmeier

Motivation Theory Landscape

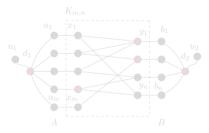
W[2] hardnes: Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Bipartite Graphs

SEMITOTAL DOMINATING SET on *bipartite* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on bipart. graphs: ① Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2 **② If the Drive Of them Drive Of the Drive Of them Of**

3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in

Lukas Retschmeier

Motivation Theory Landscape

W[2] hardnes ^{Split} Bipartite

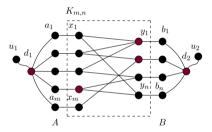
Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

Bipartite Graphs

SEMITOTAL DOMINATING SET on *bipartite* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on bipart. graphs:

① Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2

2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'

3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivation Theory Landscape

W[2] hardnes ^{Split} Bipartite

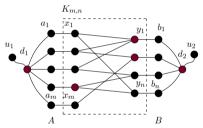
Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Bipartite Graphs

SEMITOTAL DOMINATING SET on *bipartite* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on bipart. graphs: () Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2

2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'

3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivation Theory Landscape

W[2] hardnes ^{Split} Bipartite

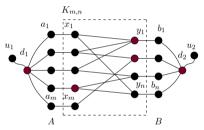
Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

Bipartite Graphs

SEMITOTAL DOMINATING SET on *bipartite* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on bipart. graphs: 1 Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2 **2** If ds *D* in G, then $D' = D \cup \{d_1, d_2\}$ is sds in *G*'

3) Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivation Theory Landscape

W[2] hardnes ^{Split} Bipartite

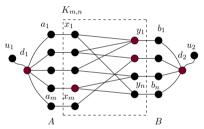
Cernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

Bipartite Graphs

SEMITOTAL DOMINATING SET on *bipartite* graphs is W[2]-hard



Proof by fpt-reduction from DOMINATING SET on bipart. graphs: () Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2

2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'

3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

.....

Master's Thesis

Presentation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

A Linear Kernel for PLANAR SEMITOTAL DOMINATING SET

Lukas Retschmeier

Motivation Theory

Landscape

W[2] hardnes Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

Kernelization

• Idea: Preprocess an instance using *Reduction Rules* until hard *kernel* bounded by f(k) is found.

Lukas Retschmeier

Motivatior Theory

Landscape

VV [2] hardne Split Bipartite

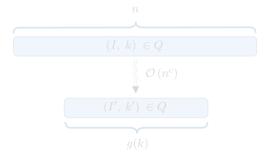
Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Kernelization

• Idea: Preprocess an instance using *Reduction Rules* until hard *kernel* is found.



Lukas Retschmeier

Motivatior Theory

Landscape

W[2] hardnes Split Bipartite

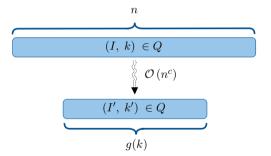
Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusio

References

Kernelization

• Idea: Preprocess an instance using *Reduction Rules* until hard *kernel* is found.



Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Related Works

Problem	Size	Source
PLANAR DOMINATING SET	67k	[16]
PLANAR TOTAL DOMINATING SET	410k	[21]
PLANAR SEMITOTAL DOMINATING SET	358k	Slide 18
Planar Edge Dominating Set	14k	[24]
PLANAR EFFICIENT DOMINATING SET	84k	[24]
PLANAR RED-BLUE DOMINATING SET	43k	[22]

130k

Linear

[35]

[1]

PLANAR CONNECTED DOMINATING SET

PLANAR DIRECTED DOMINATING SET

Lukas Retschmeier

Motivatior Theory

Landscape

W[2] hardness Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Main Theorem

The Main Theorem

PLANAR SEMITOTAL DOMINATING SET parameterized by solution size admits a linear kernel of size $|V(G')| \le 358 \cdot k$.

Lukas Retschmeier

Motivation Theory

W[2] hardness Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

The Big Picture

-) Split the neighborhoods of the graph G = (V, E);
- 2 Define three reduction rules
- Use a region decomposition to analyze the size of each region

Lukas Retschmeier

Motivation Theory

W[2] hardness Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

The Big Picture

1 Split the neighborhoods of the graph G = (V, E);

Define three reduction rules

Use a region decomposition to analyze the size of each region

Lukas Retschmeier

Motivation Theory

W[2] hardness Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

The Big Picture

1 Split the neighborhoods of the graph G = (V, E);

2 Define three reduction rules

Use a region decomposition to analyze the size of each region

Lukas Retschmeier

Motivation Theory

W[2] hardness Split Bipartite

Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

The Big Picture

- **1** Split the neighborhoods of the graph G = (V, E);
- 2 Define three reduction rules
- 3 Use a region decomposition to analyze the size of each region

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

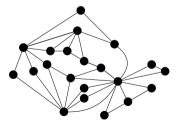
References

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)



Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

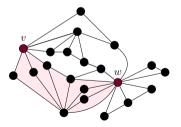
References

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)



Lukas Retschmeier

Motivatio Theory

Landscape

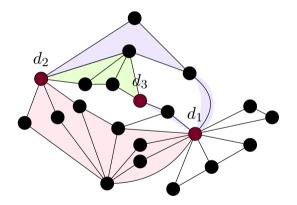
W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

*D***-Region Decomposition**



Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes: Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

D-Region Decomposition (cont.)

D-region decomposition (Alber, Fellows, Niedermeier [2])

Given G = (V, E) and sds $D \subseteq V$, a *D*-region decomposition is a set \Re of regions with poles in *D* such that:

- The poles $v, w \in D \cap V(R)$ are only dominating vertices in the region.
- Regions are disjoint but can share border vertices

A region is **maximal**, if no $R \in \mathfrak{R}$ such that $\mathfrak{R}' = \mathfrak{R} \cup \{R\}$ is a *D*-region decomposition with $V(\mathfrak{R}) \subsetneq V(\mathfrak{R}')$.

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

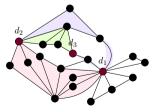
D-Region Decomposition (cont.)

D-region decomposition (Alber, Fellows, Niedermeier [2])

Given G = (V, E) and sds $D \subseteq V$, a *D*-region decomposition is a set \Re of regions with poles in *D* such that:

- The poles $v, w \in D \cap V(R)$ are only dominating vertices in the region.
- Regions are disjoint but can share border vertices

A region is **maximal**, if no $R \in \mathfrak{R}$ such that $\mathfrak{R}' = \mathfrak{R} \cup \{R\}$ is a *D*-region decomposition with $V(\mathfrak{R}) \subsetneq V(\mathfrak{R}')$.



Lukas Retschmeier

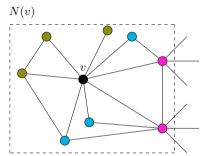
Motivatior Theory

Landscape

W[2] hardnes Split Bipartite

References

Splitting Up N(v)



We split N(v) into three subsets:

$$N_{1}(v) = \{u \in N(v) : N(u) \setminus N[v] \neq \emptyset\}$$

$$N_{2}(v) = \{u \in N(v) \setminus N_{1}(v) : N(u) \cap N_{1}(v) \neq \emptyset\}$$

$$N_{3}(v) = N(v) \setminus (N_{1}(v) \cup N_{2}(v))$$

(6)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

Lukas Retschmeier

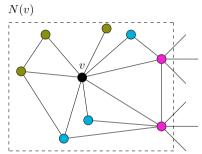
Motivatior Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusions References

Splitting Up N(v)



We split N(v) into three subsets:

 $N_{1}(v) = \{u \in N(v) : N(u) \setminus N[v] \neq \emptyset\}$ $N_{2}(v) = \{u \in N(v) \setminus N_{1}(v) : N(u) \cap N_{1}(v) \neq \emptyset\}$ $N_{3}(v) = N(v) \setminus (N_{1}(v) \cup N_{2}(v))$ (1)
(2)
(3)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

Lukas Retschmeier

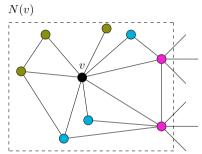
Motivatior Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size Conclusion: References

Splitting Up N(v)



We split N(v) into three subsets:

 $N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$ $N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$ $N_3(v) = N(v) \setminus (N_1(v) \cup N_2(v))$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

(1)

(2)

Lukas Retschmeier

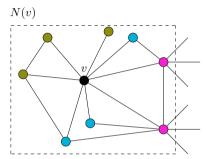
Motivatior Theory

Landscape

W[2] hardnes Split Bipartite

References

Splitting Up N(v)



We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$
(1)
(2)

$$N_3(v) = N(v) \setminus (N_1(v) \cup N_2(v))$$
(3)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$.

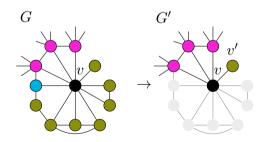
Betschmeier

Bule 1

Rule 1: Shrinking $N_3(v)$

Let G = (V, E) be a graph and let $v \in V$. If $|N_3(v)| \ge 1$: remove $N_{2,3}(v)$ from G, •

• add $\{v, v'\}$.



Idea: v better choice than $N_{2,3}(v)$ ۲

Lukas Retschmeier

Motivation Theory

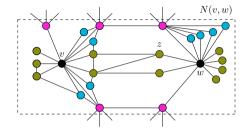
Landscape

W[2] hardnes Split Bipartite

Rule 1 Rule 2 Rule 3 Kernel Size

References

Splitting up N(v,w)



 $N_{1}(v, w) = \{ u \in N(v, w) \mid N(u) \setminus (N(v, w) \cup \{v, w\}) \neq \emptyset \}$ $N_{2}(v, w) = \{ u \in N(v, w) \setminus N_{1}(v, w) \mid N(u) \cap N_{1}(v, w) \neq \emptyset \}$ $N_{3}(v, w) = N(v, w) \setminus (N_{1}(v, w) \cup N_{2}(v, w))$ (6)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$

Lukas Retschmeier

Motivation Theory

Landscape

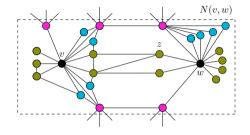
W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Splitting up N(v,w)



 $N_{1}(v,w) = \{u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset\}$ (4) $N_{2}(v,w) = \{u \in N(v,w) \setminus N_{1}(v,w) \mid N(u) \cap N_{1}(v,w) \neq \emptyset\}$ (5) $N_{3}(v,w) = N(v,w) \setminus (N_{1}(v,w) \cup N_{2}(v,w))$ (6)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$.

Lukas Retschmeier

Motivatio Theory

Landscape

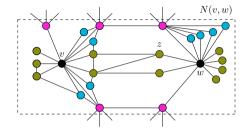
W[2] hardnes: Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

Splitting up N(v,w)



 $N_{1}(v,w) = \{u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset\}$ (4) $N_{2}(v,w) = \{u \in N(v,w) \setminus N_{1}(v,w) \mid N(u) \cap N_{1}(v,w) \neq \emptyset\}$ (5) $N_{3}(v,w) = N(v,w) \setminus (N_{1}(v,w) \cup N_{2}(v,w))$ (6)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$.

Lukas Retschmeier

Motivation Theory

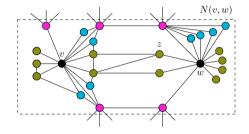
Landscape

W[2] hardnes: Split Bipartite

Conclusio

References

Splitting up N(v,w)



$$N_{1}(v,w) = \{u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset\}$$

$$N_{2}(v,w) = \{u \in N(v,w) \setminus N_{1}(v,w) \mid N(u) \cap N_{1}(v,w) \neq \emptyset\}$$

$$N_{3}(v,w) = N(v,w) \setminus (N_{1}(v,w) \cup N_{2}(v,w))$$

$$(6)$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$.

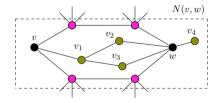
Lukas Retschmeier

Motivation Theory

Landscape

W [2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size



$$\mathcal{D} = \{\tilde{D} \subseteq N_{2,3}(v,w) \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3\}$$

$$\mathcal{D}_v = \{\tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D}\}$$

$$\mathcal{D}_v = \{\tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D}\}$$

$$\mathcal{D}_v = \{\tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D}\}$$

$$\mathcal{D}_v = \{\tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D}\}$$

$$\mathcal{D}_v = \{\tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D}\}$$

$$\mathcal{D}_v = \{\tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D}\}$$

$$\mathcal{D}_v = \{\tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D}\}$$

Lukas Retschmeier

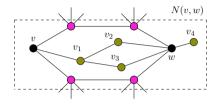
Motivatior Theory

Landscape

W [2] hardnes Split Bipartite

Rule 1 Rule 2 Rule 3 Kernel Size

References



$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v, w) \mid N_3(v, w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$

$$\mathcal{D}_v = \{ \tilde{D} \subseteq N_{2,3}(v, w) \cup \{v\} \mid N_3(v, w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$

$$\mathcal{D}_w = \{ \tilde{D} \subseteq N_{2,3}(v, w) \cup \{w\} \mid N_3(v, w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$$
(9)

Lukas Retschmeier

Motivatior Theory

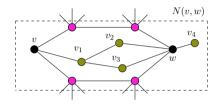
Landscape

VV [2] hardnes Split Bipartite

Rernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Rule 2



$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$

$$\tag{7}$$

$$\mathcal{D}_{v} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_{3}(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$
(8)

 $\mathcal{D}_w = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{w\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$ (9)

Lukas Retschmeier

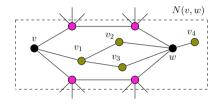
Motivatior Theory

. W[9]

hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Rule 2



$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$
(7)

$$\mathcal{D}_{v} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_{3}(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$
(8)

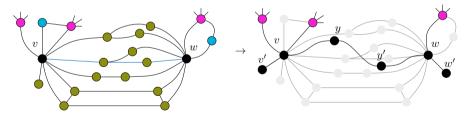
 $\mathcal{D}_w = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{w\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$ (9)

Betschmeier

Rule 2

Rule 2

- **Case 1**: If $\mathcal{D} = \emptyset$ and $\mathcal{D}_v = \emptyset$ and $D_w = \emptyset$
 - Remove $N_{2,3}(v,w)$
 - Add vertices v' and w' and two edges $\{v,v'\}$ and $\{w,w'\}$
 - Preserve d(v, w)



Lukas Retschmeier

Motivation

meory

Landscape

W[2] hardnes ^{Split} Bipartite

Definitions Rule 1 **Rule 2** Rule 3 Kernel Size

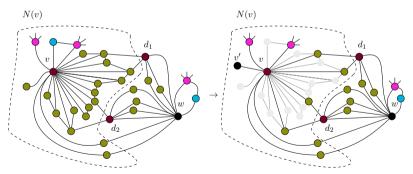
Conclusions

References

Rule 2

If $\mathcal{D} = \emptyset$ we apply the following: **Case 2/3**: if $\mathcal{D} = \emptyset$ and $\mathcal{D}_v \neq \emptyset$ and $D_w = \emptyset$

- Remove $N_{2,3}(v)$
- Add $\{v, v'\}$



Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

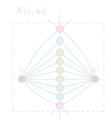
Simple Regions

Simple Region [21]

A simple vw-region is a vw-region such that:

1 its boundary paths have length at most 2, and

 $2 V(R) \setminus \{v, w\} \subseteq N(v) \cap N(w).$



Rule 3: Shrinking simple region to at most 4 vertices + preserving witness properties.

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes: Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

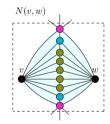
Simple Regions

Simple Region [21]

A simple vw-region is a vw-region such that:

its boundary paths have length at most 2, and

 $2 V(R) \setminus \{v, w\} \subseteq N(v) \cap N(w).$



Rule 3: Shrinking simple region to at most 4 vertices + preserving witness properties.

Lukas Retschmeier

Motivation Theory

Landscape

W[2] hardnes Split Bipartite

Cerner Definitions Rule 1 Rule 2 Rule 3

Conclusions

References

Notes

We proved, that

- all these rules are sound,
- only change the solution size by a function in f(k),
- and can be applied in poly-time.

Lukas Retschmeier

Motivation Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Notes

We proved, that

- all these rules are sound,
- only change the solution size by a function in f(k),
- and can be applied in poly-time.

Lukas Retschmeier

Mativation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Notes

We proved, that

- all these rules are sound,
- only change the solution size by a function in f(k),
- and can be applied in poly-time.

Lukas

Notes

We proved, that

- all these rules are sound,
- only change the solution size by a function in f(k),
- and can be applied in poly-time.

Rule 3 Kernel Size

Concidisions

References

Lukas Retschmeier

Motivatio Theory

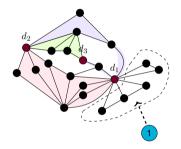
Landscape

W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Bounding the Kernel: Vertices Outside any Region



For each d in sds D: **1** $|N_1(v) \setminus V(\mathfrak{R})| \le 0$ [2], On Border **2** $|N_2(v) \setminus V(\mathfrak{R})| \le 96$ [2]: Simple regions to $N_1(v, u)$ **3** $|N_3(v) \setminus V(\mathfrak{R})| \le 1$, by Rule 1

Lukas Retschmeier

Motivation Theory

Landscape

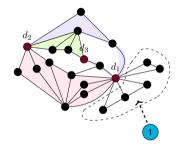
W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Jonerasiona

leferences

Bounding the Kernel: Vertices Outside any Region



For each d in sds D:

1 $|N_1(v) \setminus V(\mathfrak{R})| \le 0$ [2], On Border

2 $|N_2(v) \setminus V(\mathfrak{R})| \le 96$ [2]: Simple regions to $N_1(v, w)$

3 $|N_3(v) \setminus V(\mathfrak{R})| \le 1$, by Rule 1

Lukas Retschmeier

Motivation Theory

Landscape

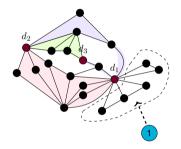
W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

leferences

Bounding the Kernel: Vertices Outside any Region



For each d in sds D: (1) $|N_1(v) \setminus V(\mathfrak{R})| \leq 0$ [2], On Border (2) $|N_2(v) \setminus V(\mathfrak{R})| \leq 96$ [2]: Simple regions to $N_1(v, v)$ (3) $|N_3(v) \setminus V(\mathfrak{R})| \leq 1$, by Rule 1

Lukas Retschmeier

Motivatio Theory

Landscape

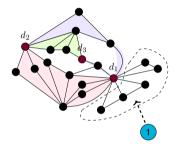
W[2] hardnes ^{Split} Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

leferences

Bounding the Kernel: Vertices Outside any Region



For each d in sds D: (1) $|N_1(v) \setminus V(\mathfrak{R})| \le 0$ [2], On Border (2) $|N_2(v) \setminus V(\mathfrak{R})| \le 96$ [2]: Simple regions to $N_1(v, w)$ (3) $|N_3(v) \setminus V(\mathfrak{R})| \le 1$, by Rule 1

Lukas Retschmeier

Motivation Theory

Landscape

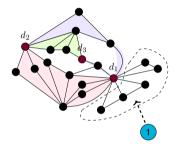
W[2] hardnes ^{Split} Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Bounding the Kernel: Vertices Outside any Region



For each d in sds D: (1) $|N_1(v) \setminus V(\mathfrak{R})| \le 0$ [2], On Border (2) $|N_2(v) \setminus V(\mathfrak{R})| \le 96$ [2]: Simple regions to $N_1(v, w)$ (3) $|N_3(v) \setminus V(\mathfrak{R})| \le 1$, by Rule 1

Lukas Retschmeier

Motivation Theory

Landscape

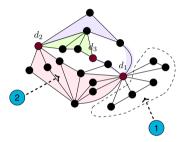
W[2] hardness Split Bipartite Kernel

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

leferences

Bounding the Kernel: Inside a region



For each vw-region, we have

1 $|N_1(v,w)| \le 4$ (vertices on border [2])

2 $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)

 ${f 3} \, \left| N_3(v,w)
ight| \leq 57$ (Rule 2 / 3)

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| \le 87$

Lukas Retschmeier

Motivatior Theory

Landscape

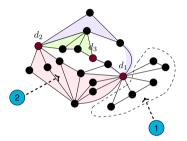
W [2] hardness Split Bipartite Kernel Definitions

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

leferences

Bounding the Kernel: Inside a region



For each vw-region, we have $|N_1(v, w)| < 4$ (vertices on border [2])

2 $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)

 $\mathbf{3} \, \left| N_3(v,w)
ight| \leq 57$ (Rule 2 / 3)

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| \le 87$

Lukas Retschmeier

Motivatior Theory

Landscape

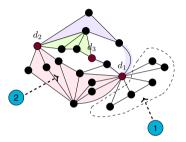
W [2] hardness Split Bipartite Kernel Definitions

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Bounding the Kernel: Inside a region



For each vw-region, we have

- 1 $|N_1(v,w)| \le 4$ (vertices on border [2])
- 2 $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)

3 $|N_3(v,w)| \le 57$ (Rule 2 / 3) **Total:** $|V(R)| = |\{v,w\} \cup (N_1(v,w) \cup N_2(v,w) \cup N_3(v,w))| \le 87$

Lukas Retschmeier

Motivatior Theory

Landscape

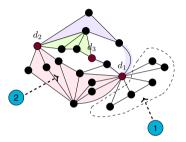
W[2] hardness Split Bipartite Kernel

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Bounding the Kernel: Inside a region



For each vw-region, we have

- 1 $|N_1(v,w)| \le 4$ (vertices on border [2])
- 2 $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)

3 $|N_3(v,w)| \le 57$ (Rule 2 / 3)

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| \le 87$

Lukas Retschmeier

Motivatio

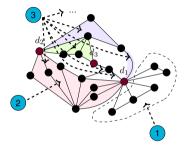
Landscape

W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Bounding the Kernel: Number of Regions



Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with $|D| \ge 3$. There is a maximal D-region decomposition of G such that $|\Re| \le 3 \cdot |D| - 6$.

Lukas Retschmeier

Motivatio

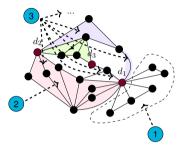
Landscape

W[2] hardnes Split Bipartite

Definitions Rule 1 Rule 2 Rule 3 Kernel Size

References

Bounding the Kernel: Number of Regions



Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with $|D| \ge 3$. There is a maximal D-region decomposition of G such that $|\Re| \le 3 \cdot |D| - 6$.

Lukas Retschmeier

Motivation Theory

Landscape

W [2] hardness Split Bipartite Kernel Definitions Rule 1

Rule 3

Kernel Size

References

Summary: Bounding Kernel Size

Let D be sds of size k. There exists a maximal *D*-region decomposition \Re such that:

1 \mathfrak{R} has only at most 3k - 6 regions (Alber, Fellows Niedermeier [2]);

2 There are at most $97 \cdot k$ vertices outside of any region;

3 Each region $R \in \mathfrak{R}$ contains at most 87 vertices. Hence: $|V| = \bigcup_{v \in D} N(v) = 87 \cdot (3k - 6) + 97 \cdot k < 358 \cdot k$

Lukas Retschmeier

Motivation

Landscape

W[2] hardness Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Main Theorem

All reduction rules can be applied in poly/time, hence:

The Main Theorem

The SEMITOTAL DOMINATING SET problem parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| \leq 358 \cdot k'$.

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

- Given an overview over the status
- SEMITOTAL DOMINATING SET is W[1] for chordal, split and bipartite graphs
- exists linear kernel of size $358\cdot k$ when parameterized by solution size Future Work:
- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

- Given an overview over the status
- SEMITOTAL DOMINATING SET is W[1] for chordal, split and bipartite graphs
- exists linear kernel of size $358 \cdot k$ when parameterized by solution size **Future Work:**
- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory

Landscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

- · Given an overview over the status
- SEMITOTAL DOMINATING SET is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $358 \cdot k$ when parameterized by solution size Future Work:
- Improve kernel size and do an empirical evaluation
- Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory

andscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

- · Given an overview over the status
- SEMITOTAL DOMINATING SET is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $358\cdot k$ when parameterized by solution size Future Work:
 - Improve kernel size and do an empirical evaluation
 - Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory

andscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

- · Given an overview over the status
- SEMITOTAL DOMINATING SET is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $358\cdot k$ when parameterized by solution size Future Work:
 - Improve kernel size and do an empirical evaluation
 - Resolve complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory

andscape

W[2] hardnes Split Bipartite

Kernel Definitions Rule 1 Rule 2 Rule 3 Kernel Size

Conclusions

References

Conclusions

- · Given an overview over the status
- SEMITOTAL DOMINATING SET is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $358\cdot k$ when parameterized by solution size Future Work:
 - Improve kernel size and do an empirical evaluation
 - Resolve complexities for Circle, chordal bipartite and undirected path graphs

? Any Questions ? ... Thank you for your attention! ...

Conclusions

Master's Thesis

Presentation

References I

Jochen Alber, Britta Dorn, and Rolf Niedermeier. "A General Data Reduction Scheme for Domination in Graphs". In: SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21-27, 2006, Proceedings. Ed. by Jiri Wiedermann et al. Vol. 3831. Lecture Notes in Computer Science. Springer, 2006, pp. 137–147.

- Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. "Polynomial-time data reduction for dominating set". In: (May 2004), pp. 363–384.
- Rémy Belmonte and Martin Vatshelle. "Graph Classes with Structured Neighborhoods and Algorithmic Applications". In: *Proceedings of the 37th International Conference on Graph-Theoretic Concepts in Computer Science.* WG'11. Teplá Monastery, Czech Republic: Springer-Verlag, 2011, pp. 47–58.
- Alan A. Bertossi. "Dominating sets for split and bipartite graphs". English. In: *Information Processing Letters* 19 (1984), pp. 37–40.
- Alan A. Bertossi. "Total domination in interval graphs". In: *Information Processing Letters* 23.3 (1986), pp. 131–134.

References II

ПΠ

- Kellogg S. Booth and J. Howard Johnson. "Dominating Sets in Chordal Graphs". In: *SIAM J. Comput.* 11.1 (Feb. 1982), pp. 191–199.
- Nicolas Bousquet et al. "Parameterized Domination in Circle Graphs". In: *Proceedings of the 38th International Conference on Graph-Theoretic Concepts in Computer Science*. WG'12. Jerusalem, Israel: Springer-Verlag, 2012, pp. 308–319.
 - Andreas Brandstädt, Victor D. Chepoi, and Feodor F. Dragan. "The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings". In: *Discrete Appl. Math.* 82.1–3 (Mar. 1998), pp. 43–77.
 - Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. "Fast Dynamic Programming for Locally Checkable Vertex Subset and Vertex Partitioning Problems". In: *Theor. Comput. Sci.* 511 (Nov. 2013), pp. 66–76.
 - Gerard J Chang. "Total domination in block graphs". In: *Operations Research Letters* 8.1 (1989), pp. 53–57.
 - Gerard J. Chang. "Algorithmic Aspects of Domination in Graphs". In: *Handbook of Combinatorial Optimization: Volume1–3*. Ed. by Ding-Zhu Du and Panos M. Pardalos. Boston, MA: Springer US, 1998, pp. 1811–1877.

References III

- Maw-Shang Chang. "Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs". In: *SIAM Journal on Computing* 27.6 (1998), pp. 1671–1694. eprint: https://doi.org/10.1137/S0097539792238431.
- Bruno Courcelle. "The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs". In: Inf. Comput. 85.1 (Mar. 1990), pp. 12–75.
- Marek Cygan et al. "Dominating set is fixed parameter tractable in claw-free graphs". In: *Theoretical Computer Science* 412.50 (2011), pp. 6982–7000.
 - Peter Damaschke, Haiko Müller, and Dieter Kratsch. "Domination in Convex and Chordal Bipartite Graphs". In: *Inf. Process. Lett.* 36.5 (Dec. 1990), pp. 231–236.
 - Volker Diekert and Bruno Durand, eds. STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26, 2005, Proceedings. Vol. 3404. Lecture Notes in Computer Science. Springer, 2005.
 - Martin Farber. "Domination, independent domination, and duality in strongly chordal graphs". In: *Discrete Applied Mathematics* 7.2 (1984), pp. 115–130.

References IV

- Celina M. H. de Figueiredo et al. "Parameterized Algorithms for Steiner Tree and Dominating Set: Bounding the Leafage by the Vertex Leafage". In: WALCOM: Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24–26, 2022, Proceedings. Jember, Indonesia: Springer-Verlag, 2022, pp. 251–262.

- Esther Galby, Andrea Munaro, and Bernard Ries. "Semitotal Domination: New Hardness Results and a Polynomial-Time Algorithm for Graphs of Bounded Mim-Width". In: *Theor. Comput. Sci.* 814.C (Apr. 2020), pp. 28–48.
- M. R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness.* W. H. Freeman, Mar. 29, 2007.

- Valentin Garnero and Ignasi Sau. "A Linear Kernel for Planar Total Dominating Set". In: *Discrete Mathematics & Theoretical Computer Science* Vol. 20 no. 1 (May 2018). Sometimes we explicitly refer to the arXiv preprint version: https://doi.org/10.48550/arXiv.1211.0978. eprint: 1211.0978.
- Valentin Garnero, Ignasi Sau, and Dimitrios M. Thilikos. "A linear kernel for planar red-blue dominating set". In: *Discret. Appl. Math.* 217 (2017), pp. 536–547.

References V

- Archontia C. Giannopoulou and George B. Mertzios. "New Geometric Representations and Domination Problems on Tolerance and Multitolerance Graphs". In: *SIAM Journal on Discrete Mathematics* 30.3 (2016), pp. 1685–1725. eprint: https://doi.org/10.1137/15M1039468.
 - Jiong Guo and Rolf Niedermeier. "Linear Problem Kernels for NP-Hard Problems on Planar Graphs". In: *Automata, Languages and Programming.* Ed. by Lars Arge et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 375–386.
 - Michael A. Henning, Saikat Pal, and D. Pradhan. "The semitotal domination problem in block graphs". English. In: *Discussiones Mathematicae. Graph Theory* 42.1 (2022), pp. 231–248.
- Michael A. Henning and Arti Pandey. "Algorithmic aspects of semitotal domination in graphs". In: *Theoretical Computer Science* 766 (2019), pp. 46–57.
- J. Mark Keil. "The Complexity of Domination Problems in Circle Graphs". In: *Discrete Appl. Math.* 42.1 (Feb. 1993), pp. 51–63.
 - Ton Kloks and Arti Pandey. "Semitotal Domination on AT-Free Graphs and Circle Graphs". In: Algorithms and Discrete Applied Mathematics: 7th International Conference, CALDAM 2021, Rupnagar, India, February 11–13, 2021, Proceedings. Rupnagar, India: Springer-Verlag, 2021, pp. 55–65.

References VI

D. V. Korobitsin. "On the complexity of domination number determination in monogenic classes of graphs". In: 2.2 (1992), pp. 191–200.

Dieter Kratsch. "Domination and Total Domination on Asteroidal Triple-Free Graphs". In: *Proceedings of the 5th Twente Workshop on on Graphs and Combinatorial Optimization*. Enschede, The Netherlands: Elsevier Science Publishers B. V., 2000, pp. 111–123.

Dieter Kratsch and Lorna Stewart. "Total domination and transformation". In: Information Processing Letters 63.3 (1997), pp. 167–170.

James K. Lan and Gerard Jennhwa Chang. "On the algorithmic complexity of k-tuple total domination". In: *Discrete Applied Mathematics* 174 (2014), pp. 81–91.

J. Pfaff; R. Laskar and S.T. Hedetniemi. *NP-completeness of Total and Connected Domination, and Irredundance for bipartite graphs.* Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.

Chunmei Liu and Yinglei Song. "Parameterized Complexity and Inapproximability of Dominating Set Problem in Chordal and near Chordal Graphs". In: *J. Comb. Optim.* 22.4 (Nov. 2011), pp. 684–698.

Beferences VII

- Weizhong Luo et al. "Improved linear problem kernel for planar connected dominating set". In: Theor. Comput. Sci. 511 (2013), pp. 2–12.
- Alice Anne McRae. "Generalizing NP-Completeness Proofs for Bipartite Graphs and Chordal Graphs". UMI Order No. GAX95-18192. PhD thesis. USA, 1995.

- Haiko Müller and Andreas Brandstädt. "The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs", In: Theor. Comput. Sci. 53,2 (June 1987), pp. 257–265.
- R. Laskar; J. Pfaff. Domination and irredundance in split graphs. Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.

- D. Pradhan and Saikat Pal. "An \$\$O(n+m)\$\$time algorithm for computing a minimum semitotal dominating set in an interval graph". In: Journal of Applied Mathematics and Computing 66.1 (June 2021), pp. 733–747.
- - Venkatesh Raman and Saket Saurabh. "Short Cycles Make W-hard Problems Hard: FPT Algorithms for W-hard Problems in Graphs with no Short Cycles". In: Algorithmica 52.2 (2008), pp. 203–225.

References VIII

Vikash Tripathi, Arti Pandey, and Anil Maheshwari. A linear-time algorithm for semitotal domination in strongly chordal graphs. 2021.