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ABSTRACT

Abstract

For a graph G = (V, E), a set D is called a semitotal dominating set, if D
is a dominating set and every vertex v ∈ D is within distance two to another
witness v′ ∈ D. The Minimum Semitotal Dominating Set problem is to
find a semitotal dominating set of minimum cardinality. The semitotal domination
number γt2(G) is the minimum cardinality of a semitotal dominating set and
is squeezed between the domination number γ(G) and the total domination
number γt(G). Given G = (V, E) and a positive integer k, the Semitotal
Domination Decision problem asks if γt2 ≤ k.

After introduced by Goddard, Henning and McPillan [38], NP-completeness of
the problem was shown for various graph classes like general graphs, split, planar,
chordal bipartite and circle graphs [49, 54]. Contrary, there exist polynomial-time
algorithms for block and interval graphs as well as for graphs of bounded mim-
width, graphs of bounded clique-width [19, 32, 48, 49, 54]. After giving a status
about the complexity of the problem, we start a systematic look through the lens
of parameterized complexity by showing that Semitotal Dominating Set is
W[2]-hard for bipartite graphs and split graphs when parameterized by solution
size. On the positive side, we extend a technique proposed by Alber et al. [3]
for Dominating Set to construct a linear kernel of size 358 · k for Semitotal
Dominating Set on planar graphs.

This result complements known linear kernels for other domination problems like
Connected Dominating Set, Planar Red-Blue Dominating Set, Ef-
ficient Dominating Set, Edge Dominating Set, Independent Dom-
inating Set, and Directed Dominating Set on planar graphs [2, 23, 35,
36, 39, 63]

Keywords: Domination; Semitotal Domination; Parameterized Complexity;
Planar Graphs; Linear Kernel; Problem Reduction; Graph Theory
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Abstract

Abstract

Ein Graph G = (V, E) und eine Menge D wird als halbtotale stabile Menge
bezeichnet, falls D eine stabile Menge ist und jeder Knoten v ∈ D maximal einen
Abstand von zwei zu einem anderen Zeugen v′ ∈ D besitzt. Das Kleinste
Halbtotale Stabile Menge Problem frägt nach einer halbtotalen stabilen
Menge von minimaler Kardinalität. Sei γt2(G) die minimale Kardinalität einer
halbtotalen stabilen Menge. Diese ist zwischen der minimalen stabilen Menge
γ(G) and der minimalen total stabilen Menge γt(G) eingezwängt. Gegeben
G = (V, E) und ein positives k, das Halbtotale Stabile Menge Problem
frägt, ob γt2 ≤ k ist.
Nachdem das Problem von Goddard, Henning und McPillan [38] eingeführt

wurde, konnte NP-vollständigkeit für viele Graphklassen wie split, plättbare,
chordal bipartite und zirkuläre Graphen bereits gezeigt werden [49, 54]. Anderer-
seits existieren polynomialzeit Algorithmen sowohl für block und interval Graphen,
als auch für Graphen mit beschränkter mim-width und Graphen mit beschränkter
clique-width [19, 32, 48, 49, 54].
Nach einer umfassenden Analyse zum Stand des Problems, beginnen wir eine

systematische Analyse aus Sicht der parametrisierten Komplexität und zeigen, dass
Halbtotale Stabile Menge bei einer parameterisierung durch die Größer
der Lösungsmenge W[2]-hart für bipartite und split Graphen ist. Basierend auf
vorangegangener Arbeiten [3, 35] war es uns möglich Reduktionsregeln anzugeben,
die einen linearen Problemkern der Größe 358 · k für plättbare Graphen erzeugt.
Dies vervollständigt existierende lineare Problemkerne ähnlicher Problem wie Con-
nected Dominating Set, Planar Red-Blue Dominating Set, Effi-
cient Dominating Set, Edge Dominating Set, Independent Domi-
nating Set oder Directed Dominating Set [2, 23, 35, 36, 39, 63].

Schlagworte: Stabile Menge; Halbtotale Stabile Menge; Parameterisierte
Komplexität; Plättbare Graphen; Linearer Problemkern; Problemreduktion; Graph
Theorie

x



CHAPTER 1
INTRODUCTION

We have seen [. . . ], which is to say, all meaning comes from
analogies.

Douglas Richard Hofstadter, I am A Strange Loop

Quack! Quack! They were careless for a second, and immediately the dreaded
geesiosi clan took the opportunity to conquer the Merganser Lake, which belongs to your
befriended ducks instantly! Now they are sitting on all the beautiful water lilies and
refuse to give them back. The desperate ducks rely on your assistance! They have given
you a map of the lake (see the left side of Figure 1.2) and marked all the water lilies in
green. You instantly assured of helping and started to analyze their situation!

You see that the geesiosi members are terrified of the ducks’ quacking, and you assume
that one single duck could free up an entire water lily by sitting there and driving
away all the geese on neighboring plants that are within a radius of ten meters! After
thinking about this for a while, you realized that this might be the critical observation
to regaining the lake! After some more deep contemplating, you came up with a
good assignment of ducks to water lilies, where only a minimum number of ducks is
required to liberate the whole territory again.

Happy with your first idea, you present it to the Supreme Duck Decision Board, but the
Chief Strategy Duck shared her worries with you: “We have to hold the fort and protect
the lake against another future rush of the geesiosi!”, they said, “and it is a tedious task

1



1 Introduction

Figure 1.2: Left: All water lilies (green) are occupied by members of the geesiosi clan! An edge
is drawn between two lilies if they are less than ten meters away such that one
can hear the neighboring duck’s quacking. The handwritten arrows have been your
first solution proposal which was refused by the Supreme Duck Decision Board.
Right: Your second and final solution: Two ducks are enough to make all geesiosis
flee. Furthermore, they are only two water lilies apart (red edge) and therefore have
someone to quack together with!

to sit alone on a water lily waiting the whole day! They would rather want to have
another duck not too far away to have someone around to quack with together!”

After revising your solution, you came up with a new one where there is always
another friend sitting at most two water lilies away. (see the right side of Figure 1.2).
Now they should be close enough to dispel boredom, and your ducks were fully
satisfied with your suggestion. Fantastic!

While you saw the chosen two ducks being sent out over the water’s surface, you
were still thinking about the problem. It looked so easy at first, but in the end, one had
to try all the possible configurations (and of course, you did not tell the ducks that it
was that simple because they think you are a wizard!). You wonder whether there is a
way where you do not have to check all the possible configurations.

Back in your library, you learn from some ancient scrolls that this problem has already
been formalized by a professor called Henning [49] as the Semitotal Dominating Set

problem, which is a variant of the intensively studied Dominating Set problem. You
read that both problems are NP-Complete [33, 49], and they are probably tough to solve
in the general case efficiently, but there might still be hope if additional information is
known. You look back into the map (Figure 1.2) and observe that none of the edges
cross with each other, and you are getting curious if it can be used for something. . .

Content of the Thesis

Emerged during the last two decades, parameterized complexity is a modern branch of
computer science that showed many practical implications. This thesis systematically

2



analyzes the Semitotal Dominating Set problem through the lens of parameterized
complexity.

Our contributions While many authors have already stated positive results - for
example, there exist polynomial-time algorithms for AT-free, block and interval graphs as
well as for graphs of bounded mim-width and graphs of bounded clique-width [19, 32, 48, 49,
54] - NP-completeness was shown for various graph classes like general graphs, split,
planar, chordal bipartite and circle graphs [49, 54].

We will further investigate these NP-Complete cases by applying the framework of
parameterized complexity. We showed W[2]-intractability for general, bipartite and split
using parameterized reductions from Dominating Set when parameterized by solution
size.

In a groundbreaking paper, Alber, Fellows, and Niedermeier [3] first gave a linear
kernel for Planar Dominating Set. They showed that a planar graph can be decom-
posed into a linear number of smaller regions. This motivated the introduction of local
reduction rules that shrink the number of vertices in such a region to a constant size.
Following up on this result, a plethora of other explicit linear kernels for domination
problems on planar graphs were found [2, 36, 39, 63] and it made us believe we can
also transfer them to Planar Semitotal Dominating Set. Our hunch turned out to
be true, and by applying similar techniques as by Garnero and Sau [35]1 for Planar

Total Dominating Set, we were able to give an explicit kernel for Planar Semitotal

Dominating Set of size 358k. More precisely, we are going to prove the following
theorem:

Theorem 1. The Planar Semitotal Dominating Set problem parameterized by solution
size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that,
given a planar graph (G, k), either correctly reports that (G, k) is a NO-instance or returns an
equivalent instance (G′, k) such that |V(G′)| ≤ 358 · k.

This thesis is organized into the following chapters:

• Chapter 2 will give the necessary definitions in the fields of graph theory and
parameterized complexity.

• In Chapter 3, we will discuss the Semitotal Dominating Set problem and its
relation to Dominating Set and Total Dominating Set in more detail. As
they are closely related, we will gather the complexity status for various graph
classes and compare them with each other in Section 3.2. We will then show
W[2]-intractability for general, bipartite, split (and chordal) graphs.

1We will rely on two different versions of this paper throughout the thesis. The arXiv versions are
explicitly marked.
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1 Introduction

• Chapter 4 is the mainstay of this thesis. We are going to construct a linear kernel
for Planar Semitotal Dominating Set following an approach first suggested
by Alber, Fellows and Niedermeier [3].

• In Chapter 5, we will give further ideas on how to improve the kernel and an
outlook about interesting open problems for Semitotal Dominating Set in
general.

4



CHAPTER 2
TERMINOLOGY AND PRELIMINARIES

“All we have to decide is what to do with the time that is given
to us.”

J. R. R. Tolkien, Gandalf in Lord of the Rings

This chapter will introduce the core definitions used throughout this thesis. Most
of the graph theory definitions are taken from [24]. For definitions in the area of
parameterized complexity, the book by Cygan et al. [20] gives an excellent introduction.
For standard mathematical notation, we refer the reader to any introductory textbook
into discrete mathematics, for instance [70].

2.1 Graph Theory

We will start by first giving basis definitions of graph theory and then define different
graph classes necessary for this thesis.

Definition 2.1.1 (Graph). A simple graph is a pair G = (V, E) of two sets where V denotes
the vertices and E ⊆ V ×V the edges of the graph. A vertex v ∈ V is incident with an edge
e ∈ E if v ∈ e. Two vertices x, y are adjacent, or neighbors, if {x, y} ∈ E. By this definition,
graph loops and multiple edges are excluded.

A multigraph is a pair (V, E) of disjoint sets together with a map E→ V ∪ [V]2 assigning to
every edge either one or two vertices, its ends. Multigraphs can have loops and multiple edges.

5



2 Terminology and Preliminaries

We usually denote the vertex set by V(G) and its edge set by E(G).

Unless stated otherwise, we usually consider only simple graphs, but the notion
of multigraphs gets essential when we later talk about the underlying multigraph of a
D-region decomposition.

Definition 2.1.2 (Subgraph and Induced Subgraph). Let G = (V, E) and G′ = (V ′, E′)
be two graphs. If V ′ ⊆ V and E′ ⊆ E then G′ is a subgraph of G. If G is a subgraph of G′ and
G′ contains all the edges to G with both endpoints in V(G′), then G′ is an induced subgraph of
G, and we write G′ = G[V(G′)].

Definition 2.1.3 (Degrees). Let G = (V, E) be a graph. The degree dG(v) (shortly d(v) if G
is clear from the context) of a vertex v ∈ V is the number of neighbors of v. We call a vertex of
degree 0 isolated, and one of degree 1 a pendant. If all the vertices of G have the same degree k,
then g is k-regular.

Definition 2.1.4 (Closed and Open Neighborhoods [5]). Let G = (V, E) be a (non-empty)
graph. The set of all neighbors of v is the open neighborhood of v and denoted by N(v); the set
N[v] = N(v) ∪ {v} is the closed neighborhood f v in G. When G needs to be made explicit,
those open and closed neighborhoods are denoted by NG(v) and NG[v].

Definition 2.1.5 (Isomorphic Graphs). Let G = (V, E) and G′ = (V ′, E′) be two graphs.
We call G and G′ isomorphic, if there exists a bijection φ : V → V ′ with {x, y} ∈ E ⇔
φ(x)φ(y) ∈ E′ for all x, y ∈ V. Such a map φ is called isomorphism.

If a graph G is isomorphic to another graph h, we denote G ∼= H.

Definition 2.1.6 (Paths and Cycles). A path is a non-empty graph P = (V, E) of the form
V =

⋃
i∈[k]{xi} and E =

⋃
i∈[k−1]{xixi+1} where all the xi’s are distinct. The vertices x0 and

xk are linked by P and are called the ends of P. The length of a path is its number of edges, and
the path on n vertices is denoted by Pn. We refer to a path P by a natural sequence of its vertices:
P = x0x1...xk. Such a path P is a path between x0 and xk, or a x0, xk-path. If P = x0...xk is a
path and k ≥ 2, the graph with vertex set V(P) and edge set E(P) ∪ {xkx0} is a cycle. The
cycle on n vertices is denoted as Cn. The distance dG(v, w) from a vertex v to a vertex w in a
graph g is the length of the shortest path between v and w. If v and w are not linked by any
path in G, we set dG(v, w) = ∞. Again, if G is clear from the context, we omit the subscripted
G and just write d(v, w) instead.

Graph Classes

A graph class is a set of graphs sharing a common structural property.

Definition 2.1.7 (Graph Parameters). Let G = (V, E) be a graph. An independent set of G
is a set of pairwise non-adjacent vertices. A clique of G is a set of pairwise adjacent vertices.
A vertex cover of G is a subset of vertices containing at least one endpoint of every edge. A
dominating set is a subset D of vertices such that all vertices not contained in are adjacent to

6



2.2 Computational Complexity Theory

some vertex in D. A dominating set is a subset D of vertices such that all vertices not contained
in are adjacent to some vertex in D. The chromatic number, χ(G), of a graph G = (V, E) is
the smallest number of colors, such that adjacent vertices in V are colored differently.

Graph Class 1 (Perfect graph). If the chromatic number equals the size of the maximum
clique, G = (V, E) is called perfect.

Graph Class 2 (r-partite). Let r ≥ 2 be an integer. A Graph G = (V, E) is called r-partite if
V admits a partition into r classes such that every edge has its ends in different classes: Vertices
in the same partition class must not be adjacent. A 2-partite graph is called bipartite.

An r-partite graph in which every two vertices from different partition classes are adjacent
is called complete. For the complete bipartite graph on bipartitions X ]Y of size m and n, we
shortly write Km,n.

Graph Class 3 (Complete). If all vertices of a graph G = (V, E) are pairwise adjacent, we
say that G is complete. A complete graph on n vertices is a Kn. A K3 is called a triangle.

Graph Class 4 (Chordal). For a graph G = (V, E), an edge that joins two vertices of a cycle,
but is not itself an edge of the cycle is a chord of that cycle.

Furthermore, we say G is chordal (or triangulated) if each of its cycles of length at least four
has a chord. In other words, it contains no induced cycle other than triangles.

Graph Class 5 (Split). A split graph is a graph G = (V, E) whose vertices can be partitioned
into a clique and an independent set.

Graph Class 6 (Plane and Planar Graphs). A plane graph is a graph G = (V, E) that can
be drawn in the plane R2 in such a way that no edges cross each other. A plane graph is a
planar graph together with a concrete drawing in the plane, the plane embedding of G.

2.2 Computational Complexity Theory

Computational complexity investigates how many computational resources are required
to solve a specific problem.

We denote P as the class of all problems that can be solved by a Deterministic Turing
Machine in polynomial time, whereas NP contains all problems that can be solved by
a Non-Deterministic Turing Machine in polynomial time. In other words P contains
problems that are efficiently solvable, whereas NP contains all problems whose solution
can efficiently be verified. Note that P ⊆ NP, but the reverse direction is unknown.

2.2.1 NP-Completeness

A significant advance in the early 1970s was the realization that some problems in
NP are at least as hard as as any other problem in NP. By spanning a whole “web of
reductions” [4] we now get strong evidence that none of these problems can be solved

7



2 Terminology and Preliminaries

efficiently. The first results in this new field were published independently by Cook [18]
and Levin [61] after Karp [52] had introduced the notion of problem reductions. The
Cook-Levin-Theorem [18] states that the Boolean Satisfiability (SAT) problem is
NP-Complete and any problem in NP can thus be reduced to SAT. A single algorithm
for one NP-Complete problem would instantly give a fast algorithm for the others as
well. We refer the reader to [4] for a comprehensive introduction to classical complexity
theory.

Definition 2.2.1 (Reductions, NP-hardness and NP-Completeness [4]). We say that a
language A ⊆ {0, 1}∗ is polynomial-time karp reducible to a language B ⊆ {0, 1}∗ (denote
A ≤p B) if there is a poly-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every
x ∈ {0, 1}∗, x ∈ A if and only if f (x) ∈ B.
We say that a problem B is NP-hard if A ≤p B for every A ∈ NP and B is NP-Complete if
additionally B ∈ NP holds.

There are thousands of NP-Complete problems we do not expect to be solvable in

polynomial time. Whether P ?
= NP is still one of the biggest open questions in math-

ematics and bountied with one million dollars by the Clay Mathematical Institute [31].
Most of the domination problems like Dominating Set, Semitotal Dominating Set,
Total Dominating Set are NP-Complete.

We do not expect NP-Complete problems to have a polynomial-time algorithm, but
strategies exist to cope with hardness. We can either give up the exactness of a solution
to possibly find fast approximation algorithms or abandon the search for a polynomial-
time algorithm in favor of finding good Exact Exponential (EEA) Algorithms instead. A
third technique is using additional structural parameters of a specific problem instance
and therefore restricting the input to special cases. This idea led to the development
of parameterized complexity.

2.3 Parameterized Complexity

Introduced by Downey and Fellows [25], parameterized complexity extends the classical
theory with a framework that allows a more dimensional analysis of computationally
hard problems. The idea is to extract an arbitrary parameter k and find an algorithm
that is only exponential in a function f (k) but only polynomial in the instance size. k
denotes how complex the problem is: k can be seen as a measure of the difficulty of
a given instance. If k is small, the problem can still be considered tractable, although
the underlying NP-hard problem is generally intractable. All definitions are taken
from [20] if not marked otherwise.

Definition 2.3.1 (Parameterized Problem). A parameterized problem is a language L ⊆
Σ∗ ×N where Σ is a finite, fixed alphabet. For an instance (x, k) ∈ Σ∗ ×N, k is called the
parameter.

8



2.3 Parameterized Complexity

The size of an instance of an instance (x, k) of a parameterized problem is |(x, k)| = |x|+ k
where the parameter k is encoded in unary by convention.

2.3.1 Fixed-Parameter Tractability

We say that a problem parameterized by some parameter k is fixed-parameter tractable
(fpt) if problem instances of size n can be solved in f (k)nO(1) time for some function
f independent of n. Like the class P can be seen as a notion of tractability in classical
complexity theory, there is an equivalent in parameterized complexity, which we denote
as Fixed-Parameter Tractable (FPT):

The Class FPT

A parameterized problem L ⊆ Σ∗ ×N is called fixed-parameter tractable if there
exists an algorithm A (called a fixed-parameter algorithm), a computable function
f : N → N and a constant c such that, given (x, k) ∈ Σ∗ ×N, the algorithm
A correctly decides whether (x, k) ∈ L in time bounded by f (k) · |(x, k)|c. The
complexity class containing all fixed-parameter tractable problems is called FPT.

2.3.2 Kernelization

A kernelization algorithm is a natural and intuitive way to approach problems and
is a preprocessing procedure that simplifies parts of an instance before the actual
solving algorithm runs. The Figure 2.2 visualizes this idea. One can introduce different
reduction rules that iteratively reduce the instance until we are left with a small kernel.
The size of this kernel must be merely dependent on the parameter k.

Definition 2.3.2 (Kernelization and Reduction Rules). A kernelization algorithm or kernel
is an algorithm A for a parameterized problem Q that given an instance (I, k) of Q runs in
polynomial time and returns an equivalent instance (I′, k′) of Q. Moreover, we require that
sizeA(k) ≤ g(k) for some computable function g : N→N.

A reduction rule is a function φ : Σ∗ ×N → Σ∗ ×N that maps an instance (x, k) to an
equivalent instance (x′, k′) such that φ is computable in time polynomial in |x| and k. A
reduction rule is sound (or safe) if (I, k) ∈ Q⇔ (I′, k′) ∈ Q.

We can precisely define the kernel’s size after executing a preprocessing algorithm A.

Definition 2.3.3 (Output Size of a Preprocessing Algorithm). The output size of a prepro-
cessing algorithms A is defined as

sizeA(k) = sup{
∣∣I′∣∣+ k′ : (I′, k′) = A(I, k), I ∈ Σ∗}

9



2 Terminology and Preliminaries

(I, k) ∈ Q

O (nc)

(I′, k′) ∈ Q

g(k)

n

Figure 2.2: The Idea of Kernelization: Reducing an instance (I, k) ∈ Q of size n to a smaller
instance (I′, k′) ∈ Q in polynomial time. The resulting size of the kernel is a
function g(k) only dependent on k.

sizeA denotes the largest size of any instance I after A has been applied. If we bound
sizeA by a polynomial in k, we say that the problem admits a polynomial kernel or a
linear kernel analogously.

The following Lemma 2.3.1 shows the relation between the complexity class FPT
and a kernelization algorithm. If we find a kernelization algorithm A for a (decidable)
problem P, we immediately obtain an fpt algorithm. First, we will run A on the
given instance in polynomial time and then solve the kernel with an exponential time
algorithm. The total running time is of order O(g( f (k)) · poly(n)) and hence, fpt.
Surprisingly, also the converse is true:

Lemma 2.3.1. A parameterized problem Q is FPT if and only if it admits a kernelization
algorithm.

We will use this property in Chapter 4 to construct a kernel for Planar Semitotal

Dominating Set and showing membership in FPT.

2.3.3 Reductions and Parameterized Intractability

It is natural to ask whether all (hard) problems are also fixed-parameter tractable. The
answer is no, and parameterized complexity has another tool to show that a problem
is unlikely to be in FPT. The idea is to transfer the concepts of NP-hardness from
Section 2.2.1 and reductions from the classical setting to the parameterized world. This
raises the need for a new type of reduction that ensures that a reduced instance (I′, k′)
is not only created in fpt time, but the new parameter k′ depends only on the size of
the parameter in the original instance.

There exists a whole hierarchy of classes FPT ⊆ W[1] ⊆ W[2] ⊆ ... ⊆ W[t] ⊆ ...,
which is known as the W-hierarchy. It is strongly believed that FPT ( W[t] and

10



2.3 Parameterized Complexity

therefore, we do not expect the existence of an algorithm solving any W[t]-hard
problem in fpt time.

Definition 2.3.4 (Parameterized Reduction). Let A, B ⊆ Σ∗ ×N two parameterized prob-
lems. A parameter preserving reduction from A to B is an algorithm that, given an instance
(x, k) of A, outputs an instance (x′, k′) of B such that:

• (x, k) is a yes instance of A iff (x′, k′) is a yes instance of B,

• k′ ≤ g(k) for some computable function g, and

• runs in fpt-time f (k) · |x|O(1) for some computable function f.

Lemmas 2.3.2 and 2.3.3 stated in [20] show that this definition ensures that reductions
are transitive and closed under fpt reductions.

Lemma 2.3.2 (Closed Under fpt-reductions). If there is a parameterized reduction from A
to B and B ∈ FPT, then A ∈ FPT.

Lemma 2.3.3 (Transitivity). If there are parameterized reductions from A to B and from B to
C, then there is a parameterized reduction from A to C.

If there exists a parameterized reduction transforming a W[t]-hard problem A to
another problem B, then B is W[t]-hard as well. We know that the Independent Set

problem is W[1]-complete and Dominating Set is W[2]-complete [20, 26]. A more
profound introduction is not required for this work, and we refer the interested reader
to [20, 29] for more details.
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CHAPTER 3

ON PARAMETERIZED SEMITOTAL DOMINATION

“This set must be small, but also complete,
to conquer the graph with ease and fleet,
with vertices chosen so carefully,
the solution is found, so elegantly.”

ChatGPT, Generated by OpenAI Language Model,
Knowledge Cutoff: 2021-09

In connection with various chessboard problems, the concept of domination can be
traced back to the mid-1800s. For example, De Jaenosch attempted in 1862 to find the
minimum number of queens required to fully cover an n× n-chessboard [50]. Because
of the immense amount of publications related to domination that followed, Haynes,
Hedetniemi, and Slater started a comprehensive survey of the literature in 1998 [43,
44]. Twenty years later, through a series of three more books, Haynes, Henning and
Hedetniemi complemented the survey with the latest developments [45, 46, 47].

We are now introducing the problems of Dominating Set, Semitotal Dominating

Set, and Total Dominating Set and dedicate the rest of the chapter to giving a current
status about the complexity on various graph classes.
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3.1 Domination Problems

3.1 Domination Problems

We will define this work’s three most important domination problems: Dominating

Set, Semitotal Dominating Set, and Total Dominating Set. Recall that a dominating
set of a graph G = (V, E) is a subset D ⊆ V, such that every vertex from V \ D is
adjacent to some vertex in D. We say that a vertex d is a dominating vertex or dominator if
d ∈ D and that d dominates all of its neighbors. Before defining the following problems,
we give the following terminology:

Definition 3.1.1 (Domination Numbers). The domination number in a graph G is the mini-
mum cardinality of a dominating set (ds) of G, denoted as γ(G). The total domination number
is the minimum cardinality of a total dominating set (tds) of G, denoted by γt(G). The
semitotal domination number is the minimum cardinality of a semitotal dominating set (sds) of
G, denoted by γt2(G).

We say that a ds D is minimal if no proper subset S′ ⊂ S is a ds and that D is a minimum if
it is the smallest ds.

DOMINATING SET (DOM) [20, p. 586]

Input Graph G = (V, E), k ∈N

Question Is there a set D ⊆ V of size at most k such that
N[D] = V?

The Dominating Set problem asks for a subset D of size at most k whose set of
neighbors are adjacent to all the other remaining vertices in a graph. Assume that
we have an arbitrary dominating set D for some connected graph G with at least two
vertices. For each v ∈ D, there must be at least one other dominating vertex v′ ∈ D
that is at most three steps away. Proven in Fact 3.1.1, this motivates the definition of the
following problem variants.

Fact 3.1.1. Let G = (V, E) be a connected graph and D a ds with |D| > 1. For any v1 ∈ D
there exists at least one other v2 ∈ D with d(v1, v2) ≤ 3.

Proof. Assume a ds D and v1 ∈ D for which no other dominating vertex is in a
distance less than three. Then exists v2 with d(v1, v2) > 3. By connectivity there is
a path p = (v1, p1, p2, ..., pi, v2) from v1 to v2 and no pi ∈ D. For D to be a valid ds,
p2, ...pi−1 have to be dominated by a neighbor as well, and therefore, there must exist a
u ∈ N(p2) ∩ D with d(v1, u) ≤ 2 giving a contradiction.

We obtain the following variants if we lower the maximal allowed distance between
two vertices in D.

13



3 On Parameterized Semitotal Domination

Requiring every vertex v ∈ V to have another direct neighbor in D leads to the Total

Dominating Set problem. We denote this neighbor as a witness of v.

TOTAL DOMINATING SET (TDOM) [20, p. 596]

Input Graph G = (V, E), k ∈N

Question Is there a dominating set D ⊆ V of size at most k,
such that for every u ∈ V(G) there exists v ∈ D with
{u, v} ∈ E?

It is natural to ask what happens if we restrict this distance property to be at most
two, which leads us straight to the idea of Semitotal Domination. For a semitotal
dominating set D, we say that v witnesses v′ if v, v′ ∈ D and d(v, v′) ≤ 2. Semitotal

Domination was introduced by Goddard, Henning and McPillan [38] as a relaxation
of Total Domination.

SEMITOTAL DOMINATING SET (SDOM) [38]

Input Graph G = (V, E), k ∈N

Question Is there a dominating set D ⊆ V of size at most k, such
that N[D] = V and for all d1 ∈ D there exists another
d2 ∈ D such that d(d1, d2) ≤ 2?

Because any tds is also an sds and every sds is also a ds, γt2 is squeezed between γ

and γt. The following fact was first observed by Goddard and Henning [38]:

Fact 3.1.2. For every graph G with no isolated vertex, γ(G) ≤ γt2(G) ≤ γt(G).

There are graphs where this inequality is strict. Figure 3.2 demonstrates that the
minimum ds, sds, and tds can strictly differ in size on a fixed graph G = (V, E). A
ds does not need witnesses, and we can choose two vertices d1 and d2 to dominate
the graph; this is the only minimum solution. As d(d1, d2) = 3, we have to introduce
additional dominating vertices for a minimum sds (middle) and tds (right). Their
only purpose is to bridge the gap between d1 and d2, but they have no function as
dominators.

14



3.2 Complexity Status of Semitotal Dominating Set

Dominating Set Semitotal Dominating Set Total Dominating Set

d1 d1 d1

d2 d2 d2

d3d3

d4

Figure 3.2: An example for a minimum dominating set, semitotal dominating set and a total
dominating set, where γ(G) < γt2(G) < γt(G) are strict. In the first case, only
two vertices suffice to dominate all others. In the second one, we need a witness
between d1 and d2 at most distance two. In the last case, d1 and d2 both need a
neighbor in the total dominating set.

3.2 Complexity Status of Semitotal Dominating Set

Goddard et al. [38] first showed that Semitotal Dominating Set (sdom) is NP-
Complete in the general case and initiated the systematic analysis of the problem.
Table 3.1 complements the complexity status for dom, sdom, and tdom when restricted
to specific graph classes, which was first surveyed by Galby et al. [32]. We also added
another column showing the known parameterized complexity. Figure 3.3 visualizes
the big picture and the inclusions among the graph classes.

A polynomial-time algorithm was shown for graphs of bounded mim-width by Galby
et al. [32]. Because a branch decompositions of constant mim-width can be found for
permutation, convex, interval, (circular k-) trapezoid, circular permutation, Dilworth-k, k-
polygon, circular arc, complements of d-degenerate, bipartite permutation and convex bipartite
graphs in polynomial time [6], this algorithm immediately implies the existence of
a polynomial time algorithm for these graph classes as well. Additionally, Galby et
al. [32] resolved the complexity for bipartite permutation and convex bipartite graphs.

Furthermore, new polynomial time algorithms have been devised for strongly chordal [71],
AT-free [54] and block [48] graphs and a new linear time algorithm has been found
for interval graphs [68] beating the previous O(n2)-algorithm given by Henning and
Pandey [49]. On the negative side, Semitotal Dominating Set on circle graphs [54]
graphs, and undirected path graphs [49] was shown to be NP-Complete.

There seems to be a symmetry between these three domination problems where the
complexity of many graph classes mirrors each other, but it looks like sdom has more
in common with dom than with tdom. For instance, on chordal bipartite graphs, sdom
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3 On Parameterized Semitotal Domination

Graph Class Dominating Set Semitotal Dominating Set Total Dominating Set

classical Parameterized classical Parameterized classical Parameterized
bipartite NPc [7] W[2] [69] NPc [49] W[2] (Theorem 2) NPc [60] ?
line graph of bipartite NPc [55] ? NPc [32] ? NPc [64] ?
circle NPc [53] W[1] [12] NPc [54] ? NPc [64] W[1] [12]
chordal NPc [11] W[2] [69] NPc [49] W[2] (Theorem 3) NPc [66] W[1] [16] by split
s-chordal , s > 3 NPc [62] W[2] [62] ? ? NPc [62] W[1] [62]
split NPc [7] W[2] [69] NPc [49] W[2] (Theorem 3) NPc [66] W[1] [16]
3-claw-free NPc [21] FPT [21] ? ? NPc [64] ?
t-claw-free, t > 3 NPc [21] W[2] [21] ? ? NPc [64] ?
chordal bipartite NPc [65] ? NPc [49] ? P [22]
planar NPc [33] FPT [3] NPc FPT (Theorem 1) NPc FPT [35]
undirected path NPc [11] FPT [28] NPc [48] ? NPc [59] ?
dually chordal P [13] ?1 P [58]
strongly chordal P [27] P [71] NPc [27]
AT-free P [57] P [54] P [57]
tolerance P [37] ? ?
block P [27] P [48] P [15]
interval P [17] P [68] P [8]

bounded clique-width P [19] P [19] P [19]
bounded mim-width P [6, 14] P [32] P [6, 14]

1Galby et al. [32] attempted it, but found a mistake in their reduction.

Table 3.1: Comparison between the complexities of Dominating Set, Semitotal Dominat-
ing Set and Total Dominating Set in the classical and parameterized setting
when parameterized by solution size. Open problems are marked with an ?. Note
that Semitotal Dominating Set follows more the complexities of Dominating

Set than Total Dominating Set which can be seen in the strongly chordal and
chordal bipartite cases.

and dom are NP-Complete, while it is polynomial-time solvable for tdom. Contrary,
sdom and dom have a polynomial-time algorithm for strongly chordal graphs, but tdom

is NP-Complete. In all currently known cases, Semitotal Dominating Set follows the
complexity of Dominating Set in the classical and the parameterized setting.

This thesis goes the first step into approaching the problem from the perspective of
parameterized complexity. If not mentioned otherwise, the problem is always parameter-
ized by the size of a solution. We have also added the parameterized complexity for
those graph classes which we used as an orientation for the complexities of Semitotal

Dominating Set. We were able to prove W[2]-hardness for bipartite and split graphs
by giving parameterized reducing from dom by solution size. We provide an explicit
construction of a kernel for the planar case, which exists for dom [3] and tdom [34] as
well.

We would like to mention that membership of Planar Semitotal Dominating Set

in FPT already follows from Alber et al. [1]. Their algorithm Planar Dominating Set
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3.2 Complexity Status of Semitotal Dominating Set

with Property P can be used to obtain an fpt algorithm with running time O(c
√

kn) for
some large constant c and solution size k. Although the kernel size we obtained is high,
we think there is a lot of room for improvement by further adjusting the reduction rules
and therefore shrinking the factor of the kernel size. There are still many gaps open
left for further research. We will discuss them at the end of this thesis in Chapter 5.
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Figure 3.3: Computational complexity of Semitotal Dominating Set. Graph classes that
admit a polynomial time algorithm are marked in green, those with an fpt algorithm
when parameterized by solution size in yellow, those that are not fpt by solution
size in red, and those that are unknown are left white. An ? denotes problems where
the classical complexity is also unknown.
convex, interval, (circular k-)trapezoid, circular permutation, Dilworth-k,
k-polygon and convex bipartite graphs have bounded mim-width, and a branch
decomposition can be found in polynomial time [6] and therefore can be solved in
polynomial time by using the algorithm proposed by Galby et al. [32].

18



3.3 Fixed-Parameter Intractability

3.3 Fixed-Parameter Intractability

We will start by giving some intractability results and show that Semitotal Dominating

Set parameterized by the natural parameterization is W[2]-hard on bipartite graphs
and triangle-free graphs by fpt-reducing from Dominating Set on bipartite graphs
Dominating Set on bipartite graphs is known to be W[2] when parameterized with
natural parameterization [69].

x1

xm

y1

yn

b1

bn

a1

am

Km,n

d2
d1

u1 u2

A B

Figure 3.4: Reducing to a bipartite G′ from the bipartite graph Km,n by duplicating all vertices
and adding exactly two forced witnesses.

Theorem 2. Semitotal Dominating Set parameterized by solution size is W[2]-hard when
restricted to bipartite graphs.

Proof. We reduce from Dominating Set and consider only X, Y 6= ∅. Given a bipartite
G = (X ∪Y, E), we construct a bipartite graph G′ = ({X′ ∪Y′}, E′):

1. For each xi ∈ X, we add a new vertex ai ∈ A and an edge {xi, ai} in between.

2. For each yj ∈ Y, we add a new vertex bj ∈ B and an edge {yj, bj} in between.

3. We add two P2’s with the vertices uj, dj and connect their ends to all ai (resp. bi).
G′ is bipartite because A and B form an independent set on G′ that can be cross-

wise attached to X and Y. X′ = X ∪ {u2, d1} ∪ B and Y′ = X ∪ {u1, d2} ∪ A form the
partitions of the new bipartite G′. It is left to show that G has a ds D of size k if and
only if G′ has an sds D′ of size k′ = k + 2.

First, assume a ds D in G of size k. We know that D′ = D ∪ {d1, d2} is an sds in G′ of
size k′ = k + 2, because d1 dominates u1 and all ai ∈ A; d2 dominates u2 and all bi ∈ B.
The same vertices dominate the rest as they were in G, but now they all have either d1

or d2 as a witness. Therefore, ∀v ∈ (D ∩ X) ∪ (D ∩Y) : (d(v, d1) = 2∨ d(v, d2) = 2).
Contrary, assume an sds D′ in G′ with size k′. Wlog, assume that d1, d2 ∈ D and

u1, u2 /∈ D, because choosing di is preferred to ui. By technical assumption X, Y 6= ∅, ui
can not be a witness for di. If ai, bi ∈ D′ we replace it with xi and yi preserving the size
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3 On Parameterized Semitotal Domination

D. A ai ∈ A can only be used to dominate their neighboring xi (bi ∈ B for yi), because
|N(ai)| = 2 and d1, d2 ∈ D′.

As d1 and d2 suffice to provide a witness for every vertex in the graph, this operation
is sound. Hence, D = D′ \ {d1, d2} gives a ds in G of size k = k′ + 2.

As G′ can be constructed in linear time and k does not depend on the input size,
this reduction is an fpt reduction. Because Dominating Set is W[2]-hard on bipartite
graphs [69, Th. 1], we conclude that Semitotal Dominating Set is W[2]-hard when
parameterized by solution size as well.

We will prove intractability for split graphs. We use the fact that every dominating
set in a split graph can directly be mapped to a corresponding semitotal dominating
set.

Theorem 3. Semitotal Dominating Set is W[1]-hard when restricted to split and chordal
graphs.

Proof. We reduce from Dominating Set on split graphs by showing that any ds
in a split graph can be mapped to a sds on the same graph. Given a split graph
G = {V = (K ∪ I), E} with |V| ≥ 2 and a ds D of size k, we can immediately obtain an
sds D′ by flipping a few vertices: If I ∩ D 6= ∅ we replace them respectively with one
arbitrary neighbor in K. All vertices in I are still being dominated and D ∩ K 6= ∅ is
sufficient to preserve domination K. Note that it is necessary to catch the case, where
D ⊆ I and witnesses are missing, which will only be guaranteed after the flip operation.
(see Figure 3.5). We now assume D ⊆ K and set D = D′. If |D′| > 1, we immediately
obtain an sds as D′ ⊆ K and k1, k2 ∈ K witness each other. If D′ = {d}, we add any
neighbor of d to D′.

For the sake of completeness, if |V| ≤ 1, we instantly reject it as there is no witness
available. In all cases k′ ≤ k + 1 and because Dominating Set is W[2]-hard on split
graphs [69] the claim follows.

K
d1

d2

d3d4

d5

K
d1

d2

d3d4

d5
−→

Figure 3.5: Obtaining an sds D′ form a given ds D in a split graph by flipping all vertices di
to their corresponding neighbor in the clique K. The clique K is highlighted in blue
Note that in D, no witnesses are available as d(d1, d5) = 3. After the flip operation,
this is fixed.
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CHAPTER 4
A LINEAR KERNEL FOR PLANAR SEMITOTAL
DOMINATION

The best way to explain it is to do it.
Lewis Caroll, Alice in Wonderland

We will present a polynomial-time preprocessing procedure giving a linear kernel
for Planar Semitotal Dominating Set parameterized by solution size. Based on the
technique first introduced by Alber, Fellows, and Niedermeier [3] in 2004, an abundance
of similar results to other domination problems emerged which gave us the belief we
can transfer these results to Semitotal Dominating Set. Table 4.1 gives an overview
of the status of various kernels for the planar case on various domination problems.
All of these results introduce reduction rules bounding the number of vertices inside
so-called “regions” which can be obtained by a decomposition of the planar graph.

In the following years, this approach bore fruits for other planar problems as well: a
11/3 kernel for Connected Vertex Cover given in [56], 624k for Maximum Triangle

Packing, 40k for Induced Matching, 13k for Feedback Vertex Set and further linear
kernels for Full-Degree Spanning Tree and Cycle Packing [10, 34, 40, 51, 72].

In the upcoming years, this approach was generalized to larger graph classes. Fomin
and Thilikos [30] started by proving that the initial reduction rules in [3] can be
extended to obtain a linear kernel on graphs with bounded genus g for Dominating

Set. Gutner [41] advanced in 2008 by giving a linear kernel for K3,h-topological-minor-
free graph classes and a polynomial kernel for Kh-topological-minor-free graph classes.
In 2012 Philip, Raman, and Sikdar [67] showed that Ki,j-free graph classes admit a
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4 A Linear Kernel for Planar Semitotal Domination

Problem Best Kernel Source
Planar Dominating Set 67k [23]1

Planar Total Dominating Set 410k [35]2

Planar Semitotal Dominating Set 358k Theorem 1

Planar Edge Dominating Set 14k [39, Th. 2]
Planar Efficient Dominating Set 84k [39, Th. 4]
Planar Red-Blue Dominating Set 43k [36]
Planar Connected Dominating Set 130k [63]
Planar Directed Dominating Set Linear [2]

1Halseth’s master thesis [42] claims a bound of 43k, but no conference or journal version was found.
2Improved their own results from first 694k [35, arXiv v2]

Table 4.1: An overview about existing kernels for planar dominating problems.

polynomial kernel. In an attempt to further expand these ideas to other problems,
Bodlaender et al. [9] proved that all problems expressible in counting monadic second-
order logic satisfying a coverability property admit a polynomial kernel on graphs
of bounded genus g. Interestingly from a theoretical point of view, the constants in
these meta-theorems for the kernels obtained are too large to be of practical interest.
The question of how an efficient kernel for the Planar Semitotal Dominating Set

problem can be constructed remains.

In this chapter, we will transfer the linear kernel with “reasonable” small constants
for Planar Total Dominating Set described by Garnero and Sau [35, arXiv v2] to
Planar Semitotal Dominating Set. We modified the original reduction rules to
preserve the witness properties of an sds.

The Main Idea A planar graph G = (V, E) with a given vertex set D ⊆ V can be
decomposed into at most (3 · |D| − 6) so-called “regions” (Definition 4.1.7). If D is
a given sds of size |D|, the total number of regions in this decomposition depends
linearly on the size of D. We define reduction rules (Rules 1 to 3) to iteratively reduce
the number of vertices around a region. After, we bound the size of a resulting graph
by proving that for a fixed k each region has only a constant number of vertices nearby.
Such a reduction gives us a kernel for Planar Semitotal Dominating Set.

Interestingly, the reduction rules do not rely on the decomposition itself, but rather
consider the neighborhood of every pair of vertices in the graph. The decomposition
has just been used as a tool to analyze the kernel size after the reduction.
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4.1 Definitions

4.1 Definitions

Before stating the reduction rules, we need definitions to capture the “nice” properties
we are to exploit. They are equal to those given by Garnero and Sau for Planar Total

Dominating Set in [35, arXiv v2] and for Planar Red-Blue Dominating Set in [36]
which in turn reused ideas introduced by Alber, Fellows and Niedermeier [3] for Pla-
nar Dominating Set. The main idea is to partition the neighborhoods of both a single
vertex and a pair of vertices respectively into three distinct subsets which intuitively
classify how much these vertices are confined and how closely they are related to the
rest of the graph. Recall for the following definition that N(v) = {u ∈ V : {u, v} ∈ E}
and N[v] = N(v) ∪ {v} the closed neighborhood of a vertex v.

Definition 4.1.1. Let G = (V, E) be a graph and let v ∈ V. We split N(v) into three subsets:

N1(v) = {u ∈ N(v) : N(u) \ N[v] 6= ∅} (4.1)

N2(v) = {u ∈ N(v) \ N1(v) : N(u) ∩ N1(v) 6= ∅} (4.2)

N3(v) = N(v) \ (N1(v) ∪ N2(v)) (4.3)

For i, j ∈ [1, 3], we denote Ni,j(v) := Ni(v) ∪ Nj(v). Furthermore, we call a vertex v′ confined
by a vertex v, if N(v′) ⊆ N[v].

v

N(v)

Figure 4.2: The neighborhood of a single vertex v split to N1(v) (purple), N2(v) (blue), and
N3(v) (olive). N1(v)’s are those having neighbors outside N(v), N2(v)’s are a
buffer between N1(v) and N3(v), and N3(v)-vertices are confined in N(v).

We will shortly discuss the definition of these sets:

N1(v) are all the neighbors of v having at least one neighbor outside of N(v) and
connect v with the rest of the graph. They are the only vertices with the
power to dominate vertices outside the neighborhood of v.
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4 A Linear Kernel for Planar Semitotal Domination

N2(v) contains all neighbors of v not from N1(v) with at least one neighbor in
N1(v). These vertices do not have any function as dominators and are placed
in between a vertex from N1(v) and those from N3(v)∪{v}. They are useless
as witnesses because either we can replace them with v (sharing the same
neighborhood) or we replace them with a z ∈ N1(v) if they function as a
witness for v.

N3(v) vertices are sealed off from the rest of the graph. They are useless as
dominators: For all z ∈ N3(v), N(z) ⊆ N(v) by definition and thus, we
would always prefer v as a dominating vertex instead of z. They can still be
necessary as a witness for v if N1(v) ∪ N2(v) = ∅ but this can only happen
if v forms a connected component with only N3(v) vertices as neighbors.
We will be using this observation in Rule 1 to shrink |N3(v)| ≤ 1.

Next, we will extend this notation to a pair of vertices which we will later use in
Rule 2 to reduce the neighborhood of two vertices. We will classify how strongly the
joined neighborhood N(v) ∪ N(w) of two vertices is connected to the rest of the graph.

Definition 4.1.2. Let G = (V, E) be a graph and v, w ∈ V. We denote by N(v, w) := N(v) ∪ N(w)

the joined neighborhood N(v) ∪ N(w) of the pair v, w and split N(v, w) into three distinct
subsets:

N1(v, w) = {u ∈ N(v, w) | N(u) \ (N(v, w) ∪ {v, w}) 6= ∅} (4.4)

N2(v, w) = {u ∈ N(v, w) \ N1(v, w) | N(u) ∩ N1(v, w) 6= ∅} (4.5)

N3(v, w) = N(v, w) \ (N1(v, w) ∪ N2(v, w)) (4.6)

For i, j ∈ [1, 3], we denote Ni,j(v, w) = Ni(v, w) ∪ Nj(v, w).

Similiar as before, N1(v, w) contains vertices with at least one neighbor outside
N[v]∪N[w], N2(v, w)-vertices are in between those from N3(v, w)∪{v, w} and N1(v, w),
and N3(v, w) contains vertices isolated from the rest of the graph.

A vertex v ∈ Ni(v) is not necessarily also in Ni(v, w)! Observe the vertex z in
Figure 4.3. Unlike the sets N1(v), N2(v) and N3(v), in every one of the distinct sets
Ni(v, w) (i ∈ [3]) there can be vertices that belong to an sds. See Figure 4.4 for examples.

4.1.1 Reduced Graph

Before stating the reduction rules, we want to clarify when we consider a graph to be
reduced.

Definition 4.1.3 ([36]). A graph G = (V, E) is reduced under a set of rules if either none of
them can be applied to G or the application of any of them creates a graph isomorphic to G.

Definition 4.1.3 differs from the definition usually used where a graph G is reduced
under a set of reduction rules if none of them can be applied to G anymore (compare
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v

w

N(v, w)

z

Figure 4.3: The neighborhood of a pair of vertices. Vertices from N3(v, w) are colored olive,
N2(v, w)’s blue and N1(v, w)’s purple. Note that z ∈ N1(w), because there is an
edge to a neighbor of v, but z /∈ N1(v, w) (and rather z ∈ N3(v, w)).

v w

d1

d2

N(v, w)

v
wd1

N(v, w)

d2

Figure 4.4: Contrary to Ni(v), vertices from all Ni(v, w) can be dominators. Left:
{d1, d2} with d2 ∈ N2(v, w) form the only minimum sds. Right: d1 ∈
N1(v, w) and d2 ∈ N3(v, w) optimal.
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4 A Linear Kernel for Planar Semitotal Domination

e.g. [29]). Some of our reduction rules (Rule 1 or Rule 2) could be applied ad infinitum
creating an endless loop that does not change G anymore. Our definition guarantees
termination in that case. All of the given reduction rules are local and only need
the neighborhood of at most two vertices. They are replaced partially with gadgets
of constant size. Checking whether the application of one of the rules created an
isomorphic graph can therefore be accomplished in constant time because only the
neighbors of these vertices might have changed and recognizing this can already be
done while each rule itself is active. If all rules created an isomorphic graph, we exit
the reduction procedure.

4.1.2 Regions in Planar Graphs

Alber, Fellows and Niedermeier [3] gave a novel approach to look at planar graphs. In
their analysis, they stated a constructive algorithm that decomposes a planar graph into
local “regions”. Intuitively, assume that we have a fixed plane embedding of a planar
graph G = (V, E). If we pick two distinct vertices v and w from a given Semitotal

Dominating Set D ⊆ V that are at most of distance two apart, we can try to find two
distinct paths from v to w that span up the boundaries of a face and enclose as many
other vertices as possible.

The following definitions are based on those given by Garnero and Sau in [35, arXiv
v2] and will lead towards a clean definition of a region and what we understand as a
D-region decomposition. More detailed explanations and concrete examples can be found
in their paper.

Definition 4.1.4. Two simple paths P1, P2 in a plane graph G are confluent if at least one of
the following statements holds:

1. they are vertex-disjoint;

2. they are edge-disjoint and for every common vertex u, if vi, wi are the neighbors of u in
pi, for i ∈ [1, 2], it holds that [v1, w1, v2, w2];

3. they are confluent after contracting common edges.

Definition 4.1.5. Let G = (V, E) be a plane graph and let v, w ∈ V be two distinct vertices.
A region R(v, w) (also denoted as vw-region R) is a closed subset of the plane, such that:

1. the boundary of R(v, w) is formed by two confluent simple vw-paths with length at most
3

2. every vertex in R(v, w) belongs to N(v, w), and

3. the complement of R(v, w) in the plane is connected.
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The poles of R are the vertices v and w. The boundary paths are the two vw-paths that form
∂R. We denote with ∂R the set of vertices on the boundary of R (including the poles) and by
V(R) the set of vertices laying (on the plane embedding) in R. Furthermore, we call |V(R)| the
size of the region of the region.

Definition 4.1.6. Two regions R1 and R2 are non-crossing, if:

1. (R1 \ ∂R1) ∩ R2 = (R2 \ ∂R2) ∩ R1 = ∅, and

2. the boundary paths of R1 are pairwise confluent with the ones in R2.

We now have all the definitions ready to formally define a maximal D-region decompo-
sition on planar graphs:

Definition 4.1.7. Given a plane graph G = (V, E) and D ⊆ V, a D-region decomposition of
G is a set R of regions with poles in D such that:

1. for any vw-region R ∈ R, it holds that D ∩V(R) = {v, w}, and

2. all regions are pairwise non-crossing.

We define V(R) =
⋃

R∈R
V(R) to be all vertices enclosed in the region.

A D-region decomposition is maximal if there is no region R /∈ R such that R′ = R∪ {R} is
a D-region decomposition with V(R) ( V(R′).

Intuitively, the first condition ensures that only a boundary path can be shared and
the second one is that these boundary paths are indeed the frontier between these
regions. Figure 4.5 gives an example of how to decompose a graph into a maximal
D-region decomposition for a given sds D of size 3.

We introduce a special subset of a region, namely a simple region where every vertex
is a common neighbor of v and w. They will appear in many unexpected astonishing
places and are an important tool to operate on small parts of a plane graph. We will
use the upcoming Rule 3 to bound the size of simple regions.

Definition 4.1.8. A simple vw-region is a vw-region such that:

1. its boundary paths have length at most 2, and

2. V(R) \ {v, w} ⊆ N(v) ∩ N(w).

Figure 4.6 shows an example of a simple region containing 9 distinct vertices.
In the analysis, we will also use properties of the underlying multigraph of a D-region

decomposition R. Refer to Figure 4.5 for an example.

Definition 4.1.9. Let G = (V, E) be a plane graph, let D ⊆ V and let R be a D-region
decomposition of G. The underlying multigraph GR = (VR, ER) of R is such that VR = D and
there is an edge {v, w} ∈ ER for each vw-region R(v, w) ∈ R.
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d1

d2

d3

d2
d3

d1

Figure 4.5: Left: A maximal D-region decomposition R, where D = {d1, d2, d3} form am sds.
There are two regions between d2 and d1 (red and purple), one region between
d1 and d3 (purple) and one region between d2 and d3 (green). Observe that this
D-region decomposition, some neighbors of d1 are not covered by any vw-region
for any v, w ∈ D. Our reduction rules are going to take care of them and bound
this number of vertices to obtain the kernel. Right: The corresponding underlying
multigraph GR. Every edge denotes a region between di and dj.

v w

N(v, w)

Figure 4.6: A simple region with two vertices from N1(v, w) (purple) setting the boundary, two
vertices from N2(v, w) (blue) and some vertices from N3(v, w) (olive) in between.

4.2 The Big Picture

The following Figure 4.7 gives an overview on how to obtain a linear kernel for Planar

Semitotal Dominating Set. We will first define three polynomial-time reduction
rules Rules 1 to 3 and prove that they preserve the solution size k. We will use the
existence of a maximal D-region decomposition R on planar graphs to bound the number
of vertices that fly around a given region R ∈ R after the reduction rules have been
exhaustively applied. Additionally, Rule 1 helps us to bound on the number of vertices
that are not enclosed by any R.
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4.3 The Reduction Rules

We will often encounter hidden simple regions which are reduced by Rule 3 and
therefore of constant size by Corollary 4.3.2. As we know that the total number of
regions R in the D-region decomposition is linear in k, we obtained a linear kernel for the
Planar Semitotal Dominating Set as well.

d1

d2

d3

2

1

3 ...

Planar Semitotal Dominating Set has
a linear kernel of size at most 358k [Theo-
rem 1]

|V \ (V(R) ∪ D| ≤ 97|D|:
[Proposition 4.4.1]

There exists maximal D-region decomposition R with |R| ≤ 3 ∗ |D| − 6
[Lemma 4.4.6]

|V(R)| ≤ 87 [Lemma 4.4.4]

|N2(v, w) ∩V(R)| ≤ 24
[Lemma 4.4.2]

|N3(v, w) ∩V(R)| ≤ 56
[Lemma 4.4.3]

|N1(v, w) ∩V(R)| ≤ 4
[Lemma 4.4.1]

Figure 4.7: The plan for obtaining a linear kernel for Planar Semitotal Dominating Set.
After Rules 1 to 3 have been applied, we analyze their impact and we prove the
following bounds for any sds D. In 1 , we try to bound the maximal number of
vertices inside a region R by analyzing the disjoint sets N1(v, w), N2(v, w) and
N3(v, w) independently for two given poles v, w ∈ D. Then, in 2 , we bound
the number of vertices that lay outside and are not enclosed into any region of a
maximal D-region decomposition R. The arrows point to these regions. Finally, in
3 , we use the fact that a R exists with at most 3 · |D| − 6 regions.

4.3 The Reduction Rules

Following the ideas proposed by Garnero and Sau [35, arXiv v2], we state adjusted
reduction rules leading to a linear kernel after exhaustive application. Especially in
Rule 2, we relied on the second revision of the paper electronically submitted to arXiv.
In the later version, the authors improved their results by giving a better kernel size,
but it turned out that these rules just work for Total Dominating Set, but not for
Semitotal Dominating Set anymore. After looking deeper into the structure of a
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4 A Linear Kernel for Planar Semitotal Domination

simple region, we were able to give a slightly more complex reduction Rule 3 having
the same bounds as in [35]. Our main challenge was to preserve the witness properties
of an sds. This is because a vertex inside a region can be important as a witness for
vertices in another region. A tds has fewer side effects as the witnesses are direct
neighbors of the dominators and they do not have too much influence on the rest of the
graph as the witnesses have in an sds. Therefore, we had to make sure that the effect of
vertices to more distanced vertices is preserved by the reduction.

4.3.1 Reduction Rule I: Shrinking N3(v)

The idea of the first rule is the observation that a vertex v′ ∈ N2,3(v) dominates v
and possibly vertices from N2(v) and N3(v). As N(v′) ⊆ N(v) and the Fact 4.3.1 that
a witness for v′ is also a witness for v, we can use v instead of v′ as a dominating
vertex. Therefore, we can remove N2,3 from the graph. Nevertheless, v′ can be a witness
for v itself and might be required in a solution. Our rule ensures that at least one
N3(v)-vertex is preserved. An example of this rule is shown in Figure 4.8.

Fact 4.3.1. Let G = (V, E), v ∈ V and v′ ∈ N2,3(v). Any witness w 6= v for v′ is also a
witness for v.

Proof. Assume v′ ∈ N2,3(v) and a witness w 6= v for v with d(w, v′) ≤ 2. By definition
of N2,3(v), N(v′) ⊆ N[v] and v′ is confined inside the neighborhood of v. Therefore
every path from v′ to the witness w within two steps must pass at least one other
vertex p ∈ N(v) ∪ {v} and {w} ∈ N(p). If p = v then w is a direct witness for v and if
p ∈ N(v), there exists a path of length 2 from v to w.

→

v′

v v

G G′

Figure 4.8: Simplifying N23(v): As N3(v) ≥ 1, we remove N23(v) and add a new witness v′.
N1(v) remains untouched.

Rule 1. Let G = (V, E) be a graph and let v ∈ V. If |N3(v)| ≥ 1:

• remove N2,3(v) from G,

• add a vertex v′ and an edge {v, v′}.
We will now prove the correctness of this rule.
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4.3 The Reduction Rules

Lemma 4.3.1. Let G = (V, E) be a graph and let v ∈ V. If G′ is the graph obtained by
applying Rule 1 on G, then G has an sds of size k if and only if G′ has an sds of size k.

Proof. Assume D to be an sds set in G of size k. Because Rule 1 was applied, we know
that N3(v) 6= ∅ in G. N3(v) must be dominated, so |D ∩ (N2,3(v) ∪ {v})| 6= ∅ in G.
Denote one of those as d. If v /∈ D, we know by Fact 4.3.1 that a witness for d 6= v is
also a witness for v and therefore, we replace d with v in D. Now assume v ∈ D and
N2,3(v) is already dominated by v. If |D ∩ (N2,3(v))| ≥ 1, set D′ = D \ N2,3(v) ∪ {v′},
else D′ = D. A z ∈ D ∩ N2,3(v) could have been a witness for v and therefore we
choose v′ ∈ D′ in the first case preserving witnesses. In both cases, v′ is dominated by
v and |D| ≤ |D′|.

Let D′ be an sds in G′. We assume that v ∈ D′ because v′ has to be dominated and v
is a better choice than v′. If v′ ∈ D′ we have to preserve a witness for v in G. We know
N3(v) 6= ∅ and therefore replace it with an arbitrary vertex d ∈ N3(v) in G. If a witness
for v came from outside of N2,3(v, w), they have not been touched by the reduction
Therefore, if v′ ∈ D′, we set D = D′ ∪ {d} \ {v′} for a d ∈ N3(v) and otherwise D = D′.
In both cases, N2,3(v) is dominated by v and |D| = |D′|.

Lemma 4.3.2. A plane graph G of n vertices is reduced under Rule 1 in time O(n).

Proof. As Rule 1 stayed the same, the proof directly follows from the two-phase algo-
rithm proposed in [3, Lemma 2].

Note that we need our definition of a reduced instance given in Definition 4.1.3. If
Rule 3 is being applied, it will still leave us with a vertex z ∈ N3(v) allowing this rule
to be applied over and over again.

4.3.2 Reduction Rule II: Shrinking the Size of a Region

The second rule is the heart of the whole reduction and minimizes the neighborhood of
two distinct vertices. The rule follows Garnero and Sau’s approach [35] for Planar

Total Dominating Set. Especially Rule 2 given in [35, arXiv v2] was not transferable
to Planar Semitotal Dominating Set, because it heavily relies on the property of
a total dominating set that a witness w for v must be a direct neighbor of w. In an
sds, the witness is allowed to be further away which must be taken into account when
reducing the graph.

It can be observed that in the worst case, four vertices are required to semitotally
dominate N(v, w) for v, w ∈ V: v, w and two witnesses for them. For instance, observe
the graph consisting of two distinct K1,m with m ∈N with centers v and w.

Before we give the concrete reduction rule, we need to define three sets. Intuitively,
we first try to find a set D̃ ⊆ N2,3(v, w) of size at most three dominating N3(v, w)

without using v or w. If no such set exists, we allow v (resp. w) and try to find
one again. If we now find such a set, we can conclude that v (w) must be part of a
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4 A Linear Kernel for Planar Semitotal Domination

solution. If such a set does not exist, we set v, w and two neighbors to be in D, which is
guaranteed to be a solution.

Definition 4.3.1. Let G = (V, E) be a graph and let v, w ∈ V. We now consider all the sets
that can dominate N3(v, w):

D = {D̃ ⊆ N2,3(v, w) | N3(v, w) ⊆
⋃

v∈D̃

N(v), |D̃| ≤ 3} (4.7)

Dv = {D̃ ⊆ N2,3(v, w) ∪ {v} | N3(v, w) ⊆
⋃

v∈D̃

N(v), |D̃| ≤ 3, v ∈ D̃} (4.8)

Dw = {D̃ ⊆ N2,3(v, w) ∪ {w} | N3(v, w) ⊆
⋃

v∈D̃

N(v), |D̃| ≤ 3, w ∈ D̃} (4.9)

Furthermore, we shortly denote
⋃Dv =

⋃
D∈Dv

D and
⋃Dw =

⋃
D∈Dw

D.

D contains subsets of N2,3(v, w) of size at most three that dominate N3(v, w). If
D 6= ∅, we cannot reduce much because all subsets could be part of a minimum
solution that does not use v and w at all. On the other hand, the sets Dv,Dw try to
activate v (resp. w) and two more vertices in N2,3(v, w) to dominate N3(v, w) with less
than four vertices. If at least one of Dv,Dw 6= ∅, we know that there are better solutions
than just selecting both v, w and two neighbors with v or w and then we can reduce
N(v, w) respectively.

Note: Assuming that v and w are closely connected with d(v, w) ≤ 2, it might suffice
to consider only sets of size at most three, because an intermediate vertex could witness
v and w at the same time. In the later analysis, the D-region decomposition exactly creates
regions around N(v, w) requiring at least one path from v to w of length two. As
the following rule is only used to locally investigate such regions, we could add the
requirement of a distance of two to it and work with sets of size at most three. We
believe that this could further improve the kernel and a deeper discussion can be found
at the end of this thesis, in Chapter 5.

We are now ready to state Rule 2. An exemplary application is shown in Figure 4.9.

Rule 2. Let G = (V, E) be a graph and v, w be two distinct vertices from V. If D = ∅
(Definition 4.3.1) we apply the following:

Case 1: if Dv = ∅ and Dw = ∅

• Remove N2,3(v, w)

• Add vertices v′ and w′ and two edges {v, v′} and {w, w′}

• If there was a common neighbor of v and w in N2,3(v, w), add another vertex y and two
connecting edges {v, y} and {y, w}
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• If there was no common neighbor of v and w in N2,3(v, w), but at least one path of
length three from v to w via only vertices from N2,3(v, w), add two vertices y and y′ and
connecting edges {v, y}, {y, y′} and {y′, w}

Case 2: if Dv 6= ∅ and Dw = ∅

• Remove N2,3(v)

• Add {v, v′}

Case 3: if Dv = ∅ and Dw 6= ∅
This case is symmetrical to Case (2).

In Case (1), we know by Fact 4.3.3 that v and w must be in D. Therefore, we
introduce two forcing vertices v′ and w′ in G′ and remove N2,3(v, w) as these vertices
are dominated by v and w. Removing N2,3(v, w) entirely, could lose paths of length less
than three and destroy solutions: If d(v, w) ≤ 2 then v can directly witness w and if
d(v, w) = 3, one vertex on this path could be a witness for both.

Again by Fact 4.3.3 we know for Cases (2) and (3) that v ∈ D (resp. w ∈ D) and
similar to Rule 1 we can simplify the neighborhood N2,3(v) (N2,3(w)). Fact 4.3.2 states,
that these vertices are only useful for witnessing v, but do not go beyond what v already
witnesses. Observe that removing N2,3 cannot break any connectivity as all vertices in
N2,3(v) are confined in v.

The case where Dv 6= ∅ ∧Dw 6= ∅ is not necessary for reasons clarified later. Before
proving Rule 2 we will deduce some facts which are implied by the definitions above.
These facts justify the definition of the sets D, Dv and Dw.

Fact 4.3.2. Let G = (V, E) be a graph, let v, w ∈ V, and let G′ be the graph obtained by the
application of Rule 2 on v, w. If D = ∅, then G has a solution of size at most k if and only if it
has a solution of size at most k containing at least one of the two vertices {v, w}.

Proof. Because D = ∅, an sds of G must contain at least one of {v, w} or at least four
vertices from N2,3(v, w). In the second case, these four vertices can be replaced with v,
w and two neighbors of v and w as witnesses. In all cases k becomes either smaller or
stays unchanged.

The second fact states that if Dv (resp. Dw) is empty, too, we only need to consider
solutions containing w (resp. v):

Fact 4.3.3. Let G = (V, E) be a graph, let v, w ∈ V, and let G′ be the graph obtained by the
application of Rule 2 on v, w. If D = ∅ and Dw = ∅ (resp. Dv = ∅) then G′ has a solution of
size at most k if and only if it has a solution containing v of size at most k (resp. w).
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wv wv

v′ w′

y

y′

v

w

→

→

N(v)

v

w

N(v)

d1

d2

v′
d1

d2

(1)

(2)

Figure 4.9: An application of Rule 2: (1) Dv = Dw = ∅ and Case (1) applies. Both v and w
must be in the sds and we can remove N2,3(v, w) and add {v′, w′}. Furthermore,
we need to preserve a path of length 3 from v to w by adding {y, y′} as well. (2)
Case (2) has been applied and the N2,3(v) removed. Observe that those vertices
that cross the dotted line are vertices from N1(v) and not removed. Case (3) is
symmetric.

Proof. As Dv = ∅, no set of the form {v}, {v, u} or {v, u, u′} with u, u′ ∈ N2,3(v, w)

can dominate N3(v, w). Since also D = ∅ any sds of G must contain v or at least four
other vertices by Fact 4.3.2. In the latter case, we replace these four vertices with v, w
and two additional neighbors as witnesses. Again, k becomes either smaller or stays
unchanged.

Using these two facts, we can now prove the correctness of Rule 2.

Lemma 4.3.3. Let G = (V, E) be a plane graph, v, w ∈ V and G′ = (V ′, E′) be the graph
obtained after application of Rule 2 on the pair {v, w}. Then G has an sds of size at most k if
and only if G′ has an sds of size at most k.

Proof. We will prove the claim by analyzing the different cases independently.
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Assume an sds D in G and by assumption D = ∅. We show that G′ has an sds with
|D′| ≤ |D|.

1. Assume Dv = ∅ ∧ Dw = ∅. By Fact 4.3.3, both v, w ∈ D. Therefore, v′, w′, and
potentially y and y′ are dominated by v or w in G′.

We have three cases: Either v and w have their own witnesses (d(v, w) > 2),
or they share one witness on a path from v to w (d(v, w) = 2) is required, or
they witness each other directly. (d(v, w) < 2). Not that the rule preserves these
distances.

We will now build an sds D′ in G′ depending on which vertices from D∩N2,3(v, w)

have been removed.

• If the rule has not removed any d ∈ D, we simply set D′ = D. If v
was a witness for w (and vice versa), Rule 2 will preserve the distance by
introducing the vertex y. Furthermore, a direct edge {v, w} will be preserved
and therefore, no witness relations being destroyed.

• If d(v, w) > 3, then v and w are not sharing any common witnesses. If the
rule has removed a vertex from D ∩ N(v), we set D′ = D \ N2,3(v, w) ∪ {v′}.
If the rule has removed a vertex from D∩N(w), we set D′ = D \N2,3(v, w)∪
{w′}. If the rule has removed a vertex from (D ∩ N(v)) and a vertex from
(D ∩ N(w)), we set D′ = D \ N2,3(v, w) ∪ {v′, w′}.

• If d(v, w) = 3 and the vertices y and y′ get introduced preserving one path
from v to w, because there has been a path via N2,3(v, w)-vertices containing
a single witness for both v and w. If the rule removed a dominating vertex
from D ∩ N2,3(v, w), we set D′ = D \ N2,3(v, w) ∪ {y}. Note that we could
also choose y′ ∈ D′, because y’s only function is to be a single witness for v
and w and every other vertex it could be a witness for, will also be witnessed
by v, w ∈ D′ (Fact 4.3.2).

• If d(v, w) ≤ 2, then v and w directly witness each other and the reduction
must preserve this relation, which is accomplished by introducing the single
bridging vertex y. Even if the rule has removed a vertex z ∈ D ∩ N2,3(v, w),
we can ignore that, because Fact 4.3.2 states that v and w will witness the
same vertices as z did. Hence, we set D′ = D \ N2,3(v, w).

In all of the cases, it follows that D′ is an sds of G′ with |D′| ≤ |D|.

2. Now, assume Dv 6= ∅ ∧ Dw = ∅: As Dw = ∅ and Fact 4.3.3, we know that
v ∈ D and v dominates N2,3(v). If a vertex d ∈ D ∩ N2,3(v) was removed, we
set D′ = D \ N2,3(v) ∪ {v′}, and D′ = D otherwise. Deleting d does not destroy
the witness properties of the graph, because by Fact 4.3.2 v already witnesses
everything d could. If d was a witness for v, we have replaced it with v′ in G′ as
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the new witness. All witnesses outside of N2,3(v) for v have not been modified
and clearly, |D′| ≤ |D| holds.

3. Dv = ∅ ∧Dw 6= ∅: The proof is symmetrical to the previous case.

Let D′ be an sds in G′ and D = ∅. We show that G has an sds D with |D| ≤ |D′| by
case distinction.

1. Dv = ∅ ∧Dw = ∅: In any case we know that v, w ∈ D to dominate v′ and w′ and
therefore dominating N2,3(v, w) in G. To preserve the distance d(v, w) the rule
might have introduced additional vertices y and y′ in the following two cases:

• If only y was introduced we know that there was a common neighbor
n ∈ N(v) ∩ N(w) of v and w. y allows v to witness w (and vice versa) and is
not part of a solution itself. (assuming y /∈ D′). Hence, we set D = D′.

• If y and y′ were added, a solution could use one of them to provide a single
witness for v and w. There exists a path p = (v, n1, n2, w) from v to w in G
only using vertices from N2,3(v, w). As n1 and n2 both witness v and w, we
put one of them in D if at least one of y or y are dominating vertices in G′.
Hence, if y ∈ D′ or y ∈ D′, we set D = D′ \ {y, y′} ∪ {n1}.

2. Dv 6= ∅ ∧ Dw = ∅: Clearly, v ∈ D′ to dominate v′. If v ∈ D′, we set D =

D′ \ {v′} ∪ d for some vertex d ∈ N2,3(v, w) and otherwise D = D′. If v′ was the
witness of v, it is now replaced by d and D is an SDS with |D| ≤ |D′|.

3. Dv = ∅ ∧Dw 6= ∅: Symmetrical to previous case.

In all cases, we have shown that |D| ≤ |D′| and D is an sds of G.

We will now prove that the reduction takes polynomial time:

Corollary 4.3.1. Rule 2 can be applied in O(d(v) + d(w)) time on two vertices v and w.

Proof. As mentioned in [35], we can construct D,Dv and Dw in O(2
√

3)(d(v) + d(w))

fpt time thanks to the algorithn Planar Dominating Set with Property P [1]. The
transformation can be done again in order O(d(v) + d(w)).

4.3.3 Reduction Rule III: Shrinking Simple Regions

We will now introduce a rule that simplifies simple regions. This reduction rule will be
our swiss-army-knife used in many places a simple region can be found. Interestingly,
the idea of having such a rule separately was introduced in a later version of Garnero
and Sau’s [35] paper for Planar Total Dominating Set. In their first revision, this rule
was circuitously included in the definition of Rule 2. Later they decided to decouple
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4.3 The Reduction Rules

it into a separate rule, which makes the arguments easier to follow and improves the
kernel size by allowing a more sophisticated analysis.

Recall that in a simple region R the entire neighborhood of the poles v and w is shared.
By planarity, a simple region has at most two vertices from N1(v, w) (namely the border ∂

R), two vertices from N2(v, w) connected to the border and unlimited N3(v, w) vertices
squeezed in the middle. Unlike in a normal vw-region, every simple region can be
semitotally dominated by at most two vertices: v and w, because v instantly witnesses
w and V(R) is dominated by them as well and we can assume V(R) ∩ D = ∅. This
does not hold for a tds, because v and w do not witness each other and probably a
vertex from inside the region must be used as a witness for a pole. But on the other
side, the witness for a vertex d ∈ D ∩V(R \ ∂R) in an sds can have a witness outside
the region and a solution without v or w can exist. In a tds where we know that v or
w must be part of a solution, we can replace all inner vertices with one vertex y and
simulate an OR gadget. If y ∈ D in a tds D, then immediately either v ∈ D or w ∈ D
to witness y as well. But if y ∈ D then v ∈ D or w ∈ D to dominate y. However, for an
sds the situation is different because the witness for y is not necessarily v or w.

A tds is easier to handle because of the strict witness property and therefore, we had
to come up with a novel reduction rule for simple regions.

Rule 3. Let G = (V, E) be a plane graph, v, w ∈ V and R be a simple region between v and
w. If |V(R) \ {v, w}| ≥ 5 apply the following:

Case 1: If G[R \ ∂R] ∼= P3, then:

• remove V(R \ ∂R)

• add vertex y with edges {v, y} and {y, w}

Case 2: If G[R \ ∂R] � P3, then

• remove V(R \ ∂R)

• add vertices y, y′ and four edges {v, y}, {v, y′}, {y, w} and {y′, w}

Recap that we denoted ∂R as the set of boundary vertices of the simple region R, which includes
v and w and possibly up to two vertices on the border of R. We defined G[V] to be the induced
subgraph on the vertices in V.

Before proving the correctness of this rule, we will quickly discuss the idea behind it.
In Case (2) we need at most two vertices to dominate V(R \ ∂R) because only an

induced path with three vertices could be dominated by one vertex. The best way
to do that is using v, w or both and adding two vertices y and y′ to simulate an OR
gadget. Either {y, y′} ⊆ D, v ∈ D or w ∈ D for any sds D in G. If we would add
only one vertex y (see Case (1)), then y ∈ D dominates v and w, and could potentially
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4 A Linear Kernel for Planar Semitotal Domination

be witnessed by another neighbor outside V(R \ ∂R). This would lead to v, w /∈ D in
G′ and a smaller solution, although G requires at least one of them. To preserve this
property, our construction needs to add two vertices.

In Case (1) we dominate V(R \ ∂R) ∼= P3 with one single vertex p2 in the middle
without using v or w. This vertex is represented by the new vertex y in G′ which
witnesses and dominates the same vertices as p2 in G. If we would use the same gadget
as in Case (2), we deteriorate our solution because v or w would be forced into an sds
D in G′, but only p2 ∈ D might be enough in G. See Figure 4.10 for an example of both
cases.

Lemma 4.3.4 (Correctness of Rule 3). Let G = (V, E) be a plane graph, v, w ∈ V and
G′ = (V ′, E′) be the graph obtained after application of Rule 3 on the pair {v, w}. Then G has
an sds of size k if and only if G′ has an sds of size k.

Proof. Consider an sds D in G. We show that G′ also has an sds with |D′| ≤ |D|.
By assumption, we have |V(R) \ {v, w}| ≥ 5, R is a simple region and therefore
d(v, w) ≤ 2. We can assume that the border ∂R consists of exactly two vertices b, b′,
because if |∂R \ {v, w}| < 2, the region’s boundary path would not enclose an area.
Consequently, |V(R \ ∂R)| ≥ 3.

Observe that if a vertex v′ ∈ V(R \ ∂R) ∩ D together with v ∈ D or w ∈ D, we
replace them with both v and w and set D′ = D \ {v′} ∪ {v, w}. If v′ was used as a
witness for v (or w), we know that v and w witness each other in a simple region. If
V(R \ ∂R)∩D = ∅, we just set D′ = D. It will be sufficient to only analyze cases where
|D ∩V(R \ ∂R)| ≤ 1, because otherwise, we replace them again with v and w.

It will be enough to only consider cases where no border vertex is dominating. If
|∂R \ {v, w} ∩ D| ≥ 1 then there is at least one other v′ ∈ V(R) ∩ D to dominate all
at least three vertices inside the region. If a pole v ∈ D or w ∈ D, we set D′ =
D \ V(R \ ∂R), otherwise there is at least one vertex d ∈ (V(R) \ ∂R) ∩ D and we
replace it with one of the poles arbitrarily: D′ = D \ V(R \ ∂R) ∪ {v}. This works,
because at least one b ∈ ∂R \ {v, w} and b, v together witness the same vertices as d
did: b witnesses all vertices in N(w) ∪ N(v) and v those neighbors from the opposite
border vertices to b.

In summary, we only need to consider only v, w /∈ D, ∂R ∩ D = ∅, |V(R \ ∂R)| ≥ 3
and |(V(R) \ ∂R) ∩ D| ≤ 1.

First assume Case (1) has applied on G and V(R \ ∂R) ∼= P3. We denote this induced
path as (p1, p2, p3). If neither {p1, p2, p3} ∩ D = ∅, we set D′ = D, trivially preserving
an sds. Otherwise, p2 ∈ D is forced because this is the only way to dominate V(R \ ∂R)
with exactly one vertex inside. We set D′ = D \ {p2} ∪ {y} and dominate {y, y′} and
witnesse N(v)∪N(w) which are the same as p2 did. This case is depicted in Figure 4.10
on the right.

Now assume Case (2) has applied and V(R \ ∂R) � P3. Let us denote this induced
path as (p1, p2, p3). We observe that without contradicting the planarity of G the
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induced subgraph of the vertices G[V(R \ ∂R)] is a subgraph Pmin(3,|V(R\∂R)|).
By assumption, we either have a P3 with at least one missing edge or a longer path.

In both cases, it is impossible to dominate this path with only one single vertex from
the path. Hence, we set D′ = D and the path is dominated by v or w In both cases
|D| = |D′|

Consider an sds D in G′ of size |D|. We show that G has an sds with |D| ≤ |D′|. We
analyze both cases separately.

Assume V(R \ ∂R) ∼= P3 and Case (1) has applied and V(R \ R) replaced by one
single vertex y. We denote the induced path in G as (p1, p2, p3). If y ∈ D′, we set
D = D′ \ {y} ∪ {p2}. We know that p2 dominates p1,p3 in G and witnesses the same
vertices as in G′, namely N(v) ∪ N(w) ∪ {b, b′}. Otherwise, we just set D = D′.

Contrary assume V(R \ ∂R) � P3 and Case (2) has been applied. V(R \ R) was
replaced by two vertices y and y′. Observe that neither y nor y′ are useful in D′ in G′:
If both y, y′ ∈ D′, we replace them by v and w. If only y ∈ D (resp. y′ ∈ D), we need
either v ∈ D′ or w ∈ D′ to dominate y (y′) and again, we replace them by v and w.

y or y′ are unimporant as witnesses, v and w witness each other and everything that
could be witnesed by y or y′ is witnessed by {v, w} as well. This simulates an OR
gadget in {v, w}. Hence D = D′ and |D| = |D′|.

In all cases, the solution sizes only changes by a constant.

The application of Rule 3 gives us a bound on the number of vertices inside a simple
region.

Corollary 4.3.2. Let G = (V, E) be a graph, v, w ∈ V and R a simple region between v and
w. If Rule 3 has been applied, this simple region has a size of at most 4.

Proof. If |V(R) \ {v, w}| < 5 then the rule would not have changed G and the size of
the region would already be smaller than 5. Assuming |V(R) \ {v, w}| ≥ 5 in both
cases V(R \ ∂R) gets removed and at most two new vertices added. As the boundary
in a simple region contains at most two vertices distinct from v and w, the size of the
simple region is bounded by at most four.

The runtime of Rule 3 is polynomial. Note that there could be more than one vw-
region, but every execution of Rule 3 reduces the graph and therefore Rule 3 might
simply be applied again on v and w. In this claim, it is to suffice to observe one fixed
vw-region between v and w.

Corollary 4.3.3. Rule 3 on two vertices v and w is applied in time O(d(v) + d(w)).

Proof. Constructing one simple vw-region can be done by the algorithm proposed in [3]
in time O(d(v) + (dw)). Check whether an P3 is induced inside V(R \ ∂R) can be done
in constant time and the reduction itself is constant in max(d(v), d(w)).
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→
v w wv

y

y′

→
v w wv y

G[R \ ∂R] ∼= P3G[R \ ∂R] � P3

R \ ∂R
R \ ∂R

P1

P2

P3

b bbb

b′ b′b′b′

Figure 4.10: Both cases of the application of Rule 3. Left: the vertices inside the region are
not isomorphic to a P3, which means that Case (2) will be applied and two new
vertices being added. Right: They are isomorphic to a P3 and we can replace the
whole inner region with one single vertex by Case (1).

4.4 Bounding the Size of the Kernel

We now put all the pieces together and prove the main result: a kernel whose size is
bounded by a linear function dependent only on the solution size k. For that purpose,
we distinguish between those vertices that are covered inside a region in a maximal
D-region decomposition and those that are not. In both cases, our reduction rules bound
the number of vertices to a constant size for a fixed region. Lemma 4.4.6 states that for
any given dominating set D, we can partition the whole graph into a linear number
of regions and we know that we have linearly many vertices left in the whole graph.
In particular, we show in the next sections that given an sds D of size k, there exists a
maximal D-region decomposition R such that:

1. Each region of R contains at most 89 vertices (Section 4.4.1);
2. V(R) covers most vertices of V. There are at most 97 · |D| vertices outside of any

region (Section 4.4.2);
3. R has only at most 3|D| − 6 regions (Section 4.4.3).

The combination of these three statements will give us a linear kernel. Figure 4.7
gives a visualization of this plan.

4.4.1 Bounding the Size of a Region

We start with a more fine-grained analysis of the impact of the different cases of Rule 2
on a vw-region. The main idea is to count the number of simple regions in the vw-
region and then use the bound on the size of a simple region after Rule 3 was applied
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4.4 Bounding the Size of the Kernel

exhaustively. The bound was obtained in Corollary 4.3.2.

Lemma 4.4.1. Given a plane Graph G = (V, E) and a vw-region R, let D be a semitotal
dominating set and let R be a maximal D-region decomposition of G. For any vw-region R ∈ R

it holds that |N1(v, w) ∩V(R)| ≤ 4 and these vertices lay exactly on the boundary ∂R of R.

Proof. The same argument as proposed by Alber, Fellows and Niedermeier [3], and
again used by Garnero and Sau [34, Proposition 2] applies here as well: Let P1 =

(v, u1, u2, w) and P2 = (v, u3, u4, w) be the two boundary paths enclosing the vw-region
R. By the definition of a region, they have a length of at most 3. Because every vertex
in R belongs to N(v, w), but a vertex from N1(v, w) also has neighbors outside N(v, w),
it must lie on one of the boundary paths P1, P2. Therefore, R has at most four boundary
vertices and |N1(v, w) ∩V(R)| ≤ 4.

The worst case occurs when the two confluent paths P1 and P2 are vertex-disjoint.

Lemma 4.4.2. [35, See Fact 5, arXiv] Given a reduced plane graph G = (V, E) and a vw-region
R, N2(v, w) ∩V(R) can be covered by at most 6 simple regions.

Proof. Let P1 = (v, u1, u2, w) and P2 = (v, u3, u4, w) be the two boundary paths of R.
As in the previous Lemma 4.4.1, the worst case is achieved if they are vertex-disjoint.
Otherwise, a smaller bound would be obtained.

By definition of N2(v, w), vertices from N2(v, w) ∩V(R) are common neighbors of
v or w and one of {u1, u2, u3, u4}. By planarity, we can cover N2(v, w) ∩V(R) with at
most 6 simple regions among 8 pairs of vertices (See Figure 4.11).

v w

u2u1

u3 u4

Figure 4.11: Bounding the maximum number of simple regions inside a region R(v, w).
N2(v, w) is covered by 6 blue regions. The two dashed edges indicate that they are
among the 8 possible pairs of vertices, but a simple region between them would
contradict the planarity.

We continue by giving a constant bound on the number of simple regions that cover
all N3(v, w) vertices in a given region.
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4 A Linear Kernel for Planar Semitotal Domination

Lemma 4.4.3. Given a plane Graph G = (V, E) reduced under Rule 2 and a region R(v, w), if
Dv 6= ∅ (resp. Dw 6= ∅), N3(v, w) ∩V(R) can be covered by:

1. 11 simple regions if Dw 6= ∅ (Dw 6= ∅),

2. 14 simple regions if N2,3(v) ∩ N3(v, w) = ∅.

Observe that in the first case, we can assume that no case of Rule 2 has been applied,
but the claim is a direct consequence of the assumption Dv 6= ∅ and Dw 6= ∅. If
Case (2) or Case (3) have been applied, N2,3(v, w) gets reduced and the second case can
be applied. For the sake of completeness, we will restate (a slightly adjusted version of)
the proof from Garnero and Sau [35, Fact 6, arXiv v2].

Note that this analysis provides a not necessarily tight upper bound and analyzing it
more sophisticated will likely yield a better bound. This could possibly be improved,
since taking both Dv 6= ∅ and Dw 6= ∅, our regions might get even more restricted.

Proof. We partition N3(v, w) into the distinct N3(v, w) \ N(w), N3(v, w) \ N(v) and
N3(v, w) ∩ N(v) ∩ N(w) and then analyze how many simple regions can there be in
the worst case.

1. Because Dv 6= ∅ there exists D = {v, u, u′} ∈ Dv (a smaller set will give a
better bound). By definition we know that D dominates N3(v, w) and also
N3(v, w) \ N(v). Therefore, all vertices in N3(v, w) \ N(v) must be neighbors of w
and either u or u′ and in the worst case at most three simple regions are required.
By assumption, Dw 6= ∅ as well, and therefore N3(v, w) \ N(w) is bounded by at
most three simple regions, too. By planarity, we can cover the remaining common
neighbors in N3(v, w) ∩ N(v) ∩ N(w) with at most 5 vertices and in total, we can
cover N3(v, w) ∩ R(v, w) by at most 3 + 3 + 5 = 11 simple regions.

2. The proof in [35] holds in our case as well.

Cases 2 to 4 of Figure 4.12 visualize these simple regions around N3(v, w) ∩ V(R)
with simple regions in the relevant cases.1

Lemma 4.4.4 (#Vertices inside a Region after Rules 1 to 3). Let G = (V, E) be a plane
graph reduced under Rules 1 to 3. Furthermore, let D be an sds of G and let v, w ∈ D. Any
vw-region R contains at most 87 vertices distinct from its poles.

Proof. By Lemmas 4.4.1 and 4.4.2 and Corollary 4.3.2 to bound the number of ver-
tices inside a simple region, we know that |N1(v, w) ∩V(R)| ≤ 4. Furthermore,
|N2(v, w) ∩V(R)| ≤ 6 · 4 = 24, because after the reduction a simple region has at

1In revision 2018 of [35], Garnero and Sau removed this proof, because they changed Rule 2 and the
overall proof was tuned.

42



4.4 Bounding the Size of the Kernel

most 4 vertices distinct from its poles and has at most 6 simpler regions covering all
N2(v, w).

It is remaining to bound for |N3(v, w) ∩V(R)|, but gladly, Rule 2 reduced them! We
will distinguish between the cases of Rule 2. Figure 4.12 shows the worst-case amount
of simple regions the individual cases can have.

Case 0: Rule 2 has not been applied in the following two cases: Either D 6= ∅ or
D = ∅ ∧Dv 6= ∅ ∧Dw 6= ∅:

1. If D 6= ∅, there exists a set D̃ = {d1, d2, d3} ∈ D of at most three vertices domi-
nating N3(v, w). We observe that vertices from |N3(v, w) ∩V(R)| are common
neighbors of either v or w (by the definition of a vw-region) and at least one
vertex from D̃, because someone has to dominate them and we know that only
the poles or vertices in D̃ come into question. Without violating planarity, we
can span at most 6 distinct simple regions. Using the bound of simple regions
(worst case shown in Corollary 4.3.2) and including

∣∣D̃∣∣ = 3, we can conclude
|N3(v, w) ∩V(R)| ≤ 6 · 4 + 3 = 27.

2. If D = ∅, Dv 6= ∅ and Dw 6= ∅, we can apply Lemma 4.4.3 and although Rule 2
has not changed the graph G, we can cover R with at most 11 simple regions
giving us |N3(v, w) ∩V(R)| ≤ 11 · 4 = 44 vertices.

Case 1: If Rule 2 Case (1) has been applied,
|N2(v, w) ∩V(R)|was entirely removed and |N3(v, w) ∩V(R)|replaced by at most four
new vertices v′, w′ and y and y′. Hence |N3(v, w) ∩V(R)| ≤ 4.

Case 2: If Rule 2 Cases (2) and (3) have been applied,
we know that N2,3(v) ∩ N3(v, w) ⊆ N2,3(v) was removed and replaced by one single
vertex. Applying Lemma 4.4.3, we can cover N3(v, w) \ {v′} ∩ V(R) with at most
14 simple regions giving us ||N3(v, w) ∩V(R)|| ≤ 14 · 4 + 1 = 57. We other case is
symmetrical.

All in all, as V(R) = {v, w} ∪ (N1(v, w) ∪ N2(v, w) ∪ N3(v, w)) we get

V(R) ≤ 2 + 4 + 24 + max(27, 44, 4, 57) = 87

We have proved the first step and bounded the number of vertices that lay inside a
single region to be at most 87.
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wv

Case 0.1: Maximal 6 simple regions

w

v

Case 1: At most 4 vertices

wv

Case 2 and 3: 14 regions

Case 0.2: At most 11 simple regions

v′

y

w′

d1

d2

d3

y′

v′

wv
u1

u′2

u′1

u2

Figure 4.12: Showing the worst case scenarios for the different cases in Lemma 4.4.4: Case 0.1:
D is nonempty and we have three vertices that can dominate N2,3 alone. They can
span simple regions with the N3(v, w) vertices. Case 1: N2,3 was removed and
four vertices introduced. Case 2 and 3: At most 14 simple regions after N2,3 has
been replaced by a single v′. Case 0.2: D, Dv and Dw are all empty, so the rule
has not changed anything and we can cover N3(v, w) ∩ V(R) with at most 11
simple regions.

4.4.2 Number of Vertices Outside the Decomposition

We continue to bound the number of vertices that do not lay inside any region of
a maximal D-region decomposition R, that is, we bound the size of V \ V(R). Rule 1
ensures that we only have a small amount of N3(v)-pendants. We then try to cover the
rest with as few simple regions as possible, because, by application of Rule 3, these
simple regions are of constant size.

The following Lemma 4.4.5 states that no vertex from N1(v) will be outside of
a maximal D-region decomposition which was already proven by Alber, Fellows and
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Niedermeier [3, Lemma 6].

Lemma 4.4.5. Let G = (V, E) be a plane graph and R be a maximal D-region decomposition
of a dominating set D. If u ∈ N1(v) for some vertex v ∈ D then u ∈ V(R).

In the following, we define dGR
(v) = |{R(v, w) ∈ R, w ∈ D}| to be the number of

regions in R having v as a pole.

Corollary 4.4.1. Let G = (V, E) be a graph and D be a set. For any maximal D-region
decomposition R on G it holds that ∑v∈D dGR

(v) = 2 · |R|.

Proof. The proof follows directly from the handshake lemma applied to the underlying
multigraph GR where every edge between v, w ∈ D represents a region between v and
w in R.

Proposition 4.4.1. Let G = (V, E) be a plane graph reduced under Rules 1 and 2 and let D be a
semitotal dominating set of G. For a maximal D-region decomposition R, |V \ (V(R) ∪ D)| ≤
97|D|.

With slight modifications, the proof given by Garnero and Sau [35, arXiv v2] will also
apply for Semitotal Dominating Set. Although we assume G to be entirely reduced,
the following proof only relies on Rules 1 and 3. The proof uses the observation that
vertices from N2(v) that lie outside of a region must span simple regions between those
from {v} ∪ N1(v).

Proof. We will follow the proof proposed by Alber, Fellows, Niedermeier [3, Proposition
2] and use the size bound of a simple region we have proven in Corollary 4.3.2. In
particular, we are going to show that V \V(R) ≤ 48 · |R|+ 2 · |D|. Lemma 4.4.6 will
then give the desired bound.

Let D be an sds, R be a maximal D-region decomposition and v ∈ D. Since D dominates
all vertices in the graph, we can consider V as

⋃
v∈D N(v) and thus, we only need to

bound the sizes of N1(v) \V(R), N2(v) \V(R) and N3(v) \V(R) separately.
N3(v): As we know that Rule 1 has been exhaustively applied, we trivially see that
|N3(v)| ≤ 1 and hence, ∣∣∣∣∣⋃

v∈D

N3(v) \V(R)

∣∣∣∣∣ ≤ |D|
N2(v): According to Garnero and Sau [35, Proposition 2], we know that N2(v) \V(R)

in a reduced graph can be covered by at most 4dGR
(v) simple regions between v and

some vertices from N1(v) on the boundary of a region in R. Figure 4.13 gives some
intuition, but intuitively, we can span two simple regions to each of the vertices from
N1(v) on the two border vertices for each R ∈ R.

Because we assume G to be reduced, by Corollary 4.3.2 a simple region can have at
least 4 vertices distinct from its poles and hence,
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∣∣∣∣∣⋃
v∈D

N2(v) \V(R)

∣∣∣∣∣ ≤ 4 ∑
v∈D

4 · dGR
(v)

= 16 · ∑
v∈D

dGR
(v)

Section 4.4.2
≤ 32|R|

(4.10)

N1(v): Because every sds is a ds, we can apply Lemma 4.4.5 and conclude that
N1(v) ⊆ V(R). Hence, ∣∣∣∣∣⋃

v∈D

N1(v) \V(R)

∣∣∣∣∣ = 0

Summing up these three upper bounds for each v ∈ D we obtain the result using the
equation from Lemma 4.4.6:

|V \V(R) ∪ D)| ≤ 32 · |R|+ |D| (Lemma 4.4.6)

≤ 32 · (3|D| − 6) + |D|
≤ 96 · |D|+ |D|
= 97 · |D| (4.11)

4.4.3 Bounding the Number of Regions

We are now utilizing the final tool in our toolbox. Alber, Fellows and Niedermeier [3,
Proposition 1] gave an explicit greedy algorithm to construct a maximal D-region
decomposition for a Dominating Set. The existence of this algorithm is the core for
all following works because they always involve region decompositions. For example,
Garnero and Sau used it for Planar Red-Blue Dominating Set [36] and Total

Dominating Set [35]. This missing puzzle piece will now assemble everything we have
set up so far giving us the linear kernelization we are looking for.

For the following lemma, Alber, Fellows and Niedermeie [3] required a reduced
instance and their reduction rules for Planar Dominating Set differed from ours.
Luckily, they do not rely on any specific properties following from a reduced graph
and therefore, we can just use it for our kernelization algorithm as well.

This was already observed by Garnero and Sau [35] and a more formal proof along
with the description of the algorithm was provided.

Because every semitotal dominating set is indeed also a dominating set, we can safely
apply it to Planar Semitotal Dominating Set as well.
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v
n2

n1

n3n4

R1

R2

Rl

Figure 4.13: Bounding the number of N2(v)-vertices around a dominating vertex v given a
maximal D-region decomposition R. v is a pole of R1, R2, ...Rj and can span
simple regions with the help of N2(v)-vertices to at most two N1(v)-vertices per
Ri. Each region has at most four vertices in N1(v, w) ⊆ N1(v) on the boundary
of Rj, but only at most two can be used for a simple region: For Example trying to
construct a simple region between v and n2 would contradict the maximality of R.
Furthermore, because rule Rule 1 has removed all but one vertex from N3(v), we
intuitively can span two regions to each of the N1(v)-vertices. Furthermore, the
size of these simple regions is bounded after the application of Rule 3.

Lemma 4.4.6 ([3, Proposition 1 and Lemma 5]). Let G be a reduced plane graph and
let D be a sds with |D| ≥ 3. There is a maximal D-region decomposition of G such that
|R| ≤ 3 · |D| − 6.

Furthermore, the overall reduction procedure runs in polynomial time:

Lemma 4.4.7. A plane graph G can be reduced by Rules 1 to 3 in time O(|(G)|3)

Proof. Testing whether Rule 1 can be applied on every vertex takes ∑v∈V O(d(v)) =
O(n). Rules 2 and 3 must be applied on every pair of vertices and take time
∑v,w∈V O(d(v) + d(w)) = O(n2) we assume that checking for termination as we de-
fined in Definition 4.1.3 takes only constant time in each step. In the worst case, in each
iteration, only one rule will be applied and one vertex reduced. Hence, we have to do
at most n iterations. Therefore, the graph can be reduced in time O(n3).

By utilizing all the previous results, we are now finally ready to prove Theorem 1:
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4 A Linear Kernel for Planar Semitotal Domination

Theorem 1. The Planar Semitotal Dominating Set problem parameterized by solution
size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that,
given a planar graph (G, k), either correctly reports that (G, k) is a NO-instance or returns an
equivalent instance (G′, k) such that |V(G′)| ≤ 358 · k.

Proof. Let G = (V, E) be the plane input graph and G′ = (V ′, E′) be the graph obtained
by the exhaustive application of Rules 1 to 3. As none of our rules change the size
of a possible solution D′ ⊆ V ′ in G′, we know by Lemma 4.3.1, Lemma 4.3.3 and
Lemma 4.3.4 that G′ has a Semitotal Dominating Set of size k if and only if G has an
sds set of size k. Furthermore, by Lemma 4.4.7, the preprocessing procedure runs in
polynomial time.

By taking the size of each region proven in Proposition 4.4.1, the total number of
regions in a maximal D-region decomposition (Lemma 4.4.6) and the number of vertices
that can lay outside of any region (Proposition 4.4.1), we obtain the following bound:

87 · (3k− 6) + 97 · k < 358 · k (4.12)

If |V(G′)| > 358 · k we replace G′ by one single vertex v, which is trivially a no-instance,
because v has no witness to form an sds.
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CHAPTER 5
OPEN QUESTIONS AND FURTHER RESEARCH

“Peter does what he usually does when he doesn’t know what
to do next: he gives up.”

Qualityland, Marc-Uwe Kling

Now that all ducks are happy again, you still have some questions in mind. After you
have shown a linear kernel of size 358 · k and, when parameterized by the solution size,
that it does probably not exist for split graphs and bipartite graphs - including triangle-free
and chordal graphs - you still have some open questions worth to be investigated.
Improving Kernel The constant of the kernel size 358 · k is very high and the usage of
an exponential time algorithm yields a total running time of O(2358k · poly(n)), which
is too large for practical applications. It would be interesting to improve them and one
idea would be the following: Rule 2 uses the fact that N(v, w) can be dominated by at
most four vertices: v, w and two neighbors as a witness. Observe that if d(v, w) ≤ 3,
this witness might be shared in an sds, because choosing one single witness on the
path from v to w is sufficient to semitotally dominate N(v, w). Therefore D, Dv and
Dw could be redefined to contain sets of size at most two (instead of three) which will
improve the reduction. Note that in our analysis, the poles of a region R in the D-region
decomposition R satisfy d(v, w) ≤ 3 by definition. Therefore, requiring d(v, w) ≤ 3
would be ok and we can still assume that Rule 2 has been applied for any R ∈ R.
d(v, w) can be calculated in linear time and would not blow up our runtime.
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5 Open Questions and Further Research

Experimental Results Our bound and its large constants refer to the worst-case
scenario which tells us little about the performance applied to real-world instances.
Already Alber et al. [3] noticed that these kinds of reduction rules behave very well
in nature and showed in an experimental setting for Planar Dominating Set that on
average more than 79% of the vertices and 88% of the edges have been removed by their
reduction rules from a sample set of random planar graphs with up to 4000 vertices.
As our reduction rules differ from those given in [3], it would be interesting to see, how
much random graphs are reduced using our preprocessing algorithm. Rules 1 to 3.
Other Open Problems The classical complexities for dually chordal and tolerance graphs
have already been asked for by Galby et al. [32] and are still open. Furthermore, it
would be interesting to complement the parameterized complexities on the hard classes
we have started in this work. open are those for circle, chordal bipartite and undirected
path graphs. We think that sdom on chordal bipartite graphs is at least W[1]-hard when
parameterized by solution size, but we have been unable to prove it. Furthermore, the
reduction for circle graphs [54] to show NP-completeness depends on the input size,
but dom and tdom have already been shown to be W[1]-hard on circle graphs [12].
Maybe these reductions can be adjusted to show W[1]-hardness for sdom as well. Last
but not least, there exists an fpt algorithm for dom on undirected path graphs [28]. Does
it transfer to sdom as well?
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C. Cachin, T. Jurdziński, and A. Tarlecki. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 375–386. isbn: 978-3-540-73420-8.

[40] J. Guo, R. Niedermeier, and S. Wernicke. “Fixed-Parameter Tractability Results for
Full-Degree Spanning Tree and Its Dual.” en. In: Parameterized and Exact Computa-
tion. Ed. by H. L. Bodlaender and M. A. Langston. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2006, pp. 203–214. isbn: 9783540391012.
doi: 10.1007/11847250_19.

[41] S. Gutner. “Polynomial Kernels and Faster Algorithms for the Dominating Set
Problem on Graphs with an Excluded Minor.” In: Parameterized and Exact Com-
putation: 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September
10-11, 2009, Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag, Dec. 2009,
pp. 246–257. isbn: 9783642112683.

54

https://doi.org/10.1145/3460351
https://doi.org/10.1016/j.tcs.2020.01.007
https://doi.org/10.1016/j.tcs.2020.01.007
https://doi.org/10.1007/s00453-018-0495-5
https://doi.org/10.48550/arXiv.1211.0978
https://doi.org/10.48550/arXiv.1211.0978
https://doi.org/10.23638/DMTCS-20-1-14
1211.0978
https://doi.org/10.1016/j.dam.2016.09.045
https://doi.org/10.1016/j.dam.2016.09.045
https://doi.org/10.1137/15M1039468
https://doi.org/10.1137/15M1039468
https://doi.org/10.1007/11847250_19


Bibliography

[42] J. T. Halseth. “A 43k Kernel for Planar Dominating Set using Computer-Aided
Reduction Rule Discovery.” In: University of Bergen, University Library (Feb. 2016).

[43] T. W. Haynes, S. Hedetniemi, and P. Slater. Domination in Graphs: Volume 2:
Advanced Topics. New York: Routledge, Oct. 1998. isbn: 9781315141428. doi:
10.1201/9781315141428.

[44] T. W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs.
Boca Raton: CRC Press, Jan. 1998. isbn: 9780429157769. doi: 10.1201/9781482246582.

[45] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. Domination in Graphs: Core
Concepts. 1st ed. Not yet released by the writing of this theiss. Springer Nature,
2022.

[46] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. Structures of Domination in
Graphs. Google-Books-ID: YbosEAAAQBAJ. Springer Nature, May 2021. isbn:
9783030588922.

[47] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. Topics in Domination in
Graphs. 1st ed. Springer Nature, 2020. isbn: 978-3-030-51116-6.

[48] M. A. Henning, S. Pal, and D. Pradhan. “The semitotal domination problem in
block graphs.” English. In: Discussiones Mathematicae. Graph Theory 42.1 (2022),
pp. 231–248. issn: 1234-3099. doi: 10.7151/dmgt.2254.

[49] M. A. Henning and A. Pandey. “Algorithmic aspects of semitotal domination in
graphs.” In: Theoretical Computer Science 766 (2019), pp. 46–57. issn: 0304-3975.
doi: https://doi.org/10.1016/j.tcs.2018.09.019.

[50] C. F. d. Jaenisch. Traité des applications de l’analyse mathématique au jeu des échecs,
précédé d’une introduction à l’usage des lecteurs soit étrangers aux échecs, soit peu versés
dans l’analyse. 3 vol. Saint-Pétersbourg: Dufour et cie; [etc., etc.], 1862, 3 vol.

[51] I. Kanj, M. J. Pelsmajer, M. Schaefer, and G. Xia. “On the induced matching
problem.” en. In: Journal of Computer and System Sciences 77.6 (Nov. 2011), pp. 1058–
1070. issn: 0022-0000. doi: 10.1016/j.jcss.2010.09.001.

[52] R. M. Karp. “Reducibility among Combinatorial Problems.” In: Complexity of
Computer Computations: Proceedings of a symposium on the Complexity of Computer
Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathematics
Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences
Department. Ed. by R. E. Miller, J. W. Thatcher, and J. D. Bohlinger. Boston, MA:
Springer US, 1972, pp. 85–103. isbn: 978-1-4684-2001-2. doi: 10.1007/978-1-
4684-2001-2_9.

[53] J. M. Keil. “The Complexity of Domination Problems in Circle Graphs.” In: Discrete
Appl. Math. 42.1 (Feb. 1993), pp. 51–63. issn: 0166-218X. doi: 10.1016/0166-
218X(93)90178-Q.

55

https://doi.org/10.1201/9781315141428
https://doi.org/10.1201/9781482246582
https://doi.org/10.7151/dmgt.2254
https://doi.org/https://doi.org/10.1016/j.tcs.2018.09.019
https://doi.org/10.1016/j.jcss.2010.09.001
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/0166-218X(93)90178-Q
https://doi.org/10.1016/0166-218X(93)90178-Q


Bibliography

[54] T. Kloks and A. Pandey. “Semitotal Domination on AT-Free Graphs and Cir-
cle Graphs.” In: Algorithms and Discrete Applied Mathematics: 7th International
Conference, CALDAM 2021, Rupnagar, India, February 11–13, 2021, Proceedings.
Rupnagar, India: Springer-Verlag, 2021, pp. 55–65. isbn: 978-3-030-67898-2. doi:
10.1007/978-3-030-67899-9_5.

[55] D. V. Korobitsin. “On the complexity of domination number determination in
monogenic classes of graphs.” In: 2.2 (1992), pp. 191–200. doi: doi:10.1515/dma.
1992.2.2.191.

[56] Ł. Kowalik, M. Pilipczuk, and K. Suchan. “Towards optimal kernel for connected
vertex cover in planar graphs.” en. In: Discrete Applied Mathematics 161.7 (May
2013), pp. 1154–1161. issn: 0166-218X. doi: 10.1016/j.dam.2012.12.001.

[57] D. Kratsch. “Domination and Total Domination on Asteroidal Triple-Free Graphs.”
In: Proceedings of the 5th Twente Workshop on on Graphs and Combinatorial Opti-
mization. Enschede, The Netherlands: Elsevier Science Publishers B. V., 2000,
pp. 111–123.

[58] D. Kratsch and L. Stewart. “Total domination and transformation.” In: Information
Processing Letters 63.3 (1997), pp. 167–170. issn: 0020-0190. doi: https://doi.
org/10.1016/S0020-0190(97)00115-4.

[59] J. K. Lan and G. J. Chang. “On the algorithmic complexity of k-tuple total
domination.” In: Discrete Applied Mathematics 174 (2014), pp. 81–91. issn: 0166-
218X. doi: https://doi.org/10.1016/j.dam.2014.04.007.

[60] J. P. R. Laskar and S. Hedetniemi. NP-completeness of Total and Connected Domi-
nation,and Irredundance for bipartite graphs. Technical Report 428. Department of
Mathematical Sciences: Clemson University, 1983.

[61] L. Levin. “Universal sequential search problems.” In: Problemy PeredachiInfor-
matskii (1973).

[62] C. Liu and Y. Song. “Parameterized Complexity and Inapproximability of Dom-
inating Set Problem in Chordal and near Chordal Graphs.” In: J. Comb. Optim.
22.4 (Nov. 2011), pp. 684–698. issn: 1382-6905. doi: 10.1007/s10878-010-9317-7.

[63] W. Luo, J. Wang, Q. Feng, J. Guo, and J. Chen. “Improved linear problem kernel
for planar connected dominating set.” In: Theor. Comput. Sci. 511 (2013), pp. 2–12.
doi: 10.1016/j.tcs.2013.06.011.

[64] A. A. McRae. “Generalizing NP-Completeness Proofs for Bipartite Graphs and
Chordal Graphs.” UMI Order No. GAX95-18192. PhD thesis. USA, 1995.

[65] H. Müller and A. Brandstädt. “The NP-Completeness of Steiner Tree and Domi-
nating Set for Chordal Bipartite Graphs.” In: Theor. Comput. Sci. 53.2 (June 1987),
pp. 257–265. issn: 0304-3975.

56

https://doi.org/10.1007/978-3-030-67899-9_5
https://doi.org/doi:10.1515/dma.1992.2.2.191
https://doi.org/doi:10.1515/dma.1992.2.2.191
https://doi.org/10.1016/j.dam.2012.12.001
https://doi.org/https://doi.org/10.1016/S0020-0190(97)00115-4
https://doi.org/https://doi.org/10.1016/S0020-0190(97)00115-4
https://doi.org/https://doi.org/10.1016/j.dam.2014.04.007
https://doi.org/10.1007/s10878-010-9317-7
https://doi.org/10.1016/j.tcs.2013.06.011


Bibliography

[66] R. L. Pfaff. Domination and irredundance in split graphs. Technical Report 428.
Department of Mathematical Sciences: Clemson University, 1983.

[67] G. Philip, V. Raman, and S. Sikdar. “Polynomial kernels for dominating set in
graphs of bounded degeneracy and beyond.” In: ACM Transactions on Algorithms
9.1 (Dec. 2012), 11:1–11:23. issn: 1549-6325. doi: 10.1145/2390176.2390187.

[68] D. Pradhan and S. Pal. “An $$O(n+m)$$time algorithm for computing a minimum
semitotal dominating set in an interval graph.” In: Journal of Applied Mathematics
and Computing 66.1 (June 2021), pp. 733–747. issn: 1865-2085. doi: 10.1007/
s12190-020-01459-9.

[69] V. Raman and S. Saurabh. “Short Cycles Make W-hard Problems Hard: FPT Al-
gorithms for W-hard Problems in Graphs with no Short Cycles.” In: Algorithmica
52.2 (2008), pp. 203–225. issn: 1432-0541. doi: 10.1007/s00453-007-9148-9.

[70] K. Rosen and K. Krithivasan. Discrete Mathematics and Its Applications: With Com-
binatorics and Graph Theory. McGraw-Hill Companies, 2012. isbn: 9780070681880.

[71] V. Tripathi, A. Pandey, and A. Maheshwari. A linear-time algorithm for semitotal
domination in strongly chordal graphs. 2021. doi: 10.48550/ARXIV.2109.02142.

[72] J. Wang, Y. Yang, J. Guo, and J. Chen. “Linear Problem Kernels for Planar
Graph Problems with Small Distance Property.” en. In: Mathematical Foundations
of Computer Science 2011. Ed. by F. Murlak and P. Sankowski. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 592–603. isbn:
9783642229930. doi: 10.1007/978-3-642-22993-0_53.

57

https://doi.org/10.1145/2390176.2390187
https://doi.org/10.1007/s12190-020-01459-9
https://doi.org/10.1007/s12190-020-01459-9
https://doi.org/10.1007/s00453-007-9148-9
https://doi.org/10.48550/ARXIV.2109.02142
https://doi.org/10.1007/978-3-642-22993-0_53


LIST OF FIGURES

1.1 Generated with Dalle-E. Knowledge Cutoff 09-2022 . . . . . . . . . . . . 1
1.2 Introductions: Merganser Lake. Own Drawing. Embedded icons under

public domain from https://creazilla.com/ . . . . . . . . . . . . . . . . . 2

2.1 Generated with Dalle-E. Knowledge Cutoff 09-2022 . . . . . . . . . . . . 5
2.2 Idea of kernelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Generated with Dalle-E. Knowledge Cutoff 09-2022 . . . . . . . . . . . . 12
3.2 An example for various dominating sets . . . . . . . . . . . . . . . . . . 15
3.3 Graph inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Construction bipartite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Constructing split graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Generated with Dalle-E. Knowledge Cutoff 09-2022 . . . . . . . . . . . . 21
4.2 The neighbordhood of a single Vertex v . . . . . . . . . . . . . . . . . . . 23
4.3 The neighborhood of a pair of vertices . . . . . . . . . . . . . . . . . . . . 25
4.4 Example for N2(v, w) dominating . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 Region Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 A simple region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Structure of the Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Application of Rule 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9 Application of Rule 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10 Application of Rule 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 Bounding number of simple regions with N2(v, w) inside a vw-region R 41
4.12 Bounding number of simple regions with inside a vw-region R . . . . . 44
4.13 Vertices from N2(v) laying outside . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Generated with Dalle-E. Knowledge Cutoff 09-2022 . . . . . . . . . . . . 49

58

https://creazilla.com/


LIST OF TABLES

3.1 Comparison between the complexities of Dominating Set, Semitotal Dom-
inating Set and Total Dominating Set in the classical and parameterized
setting when parameterized by solution size. Open problems are marked with
an ?. Note that Semitotal Dominating Set follows more the complexities
of Dominating Set than Total Dominating Set which can be seen in the
strongly chordal and chordal bipartite cases. . . . . . . . . . . . . . . . . . . . 16

4.1 An overview about existing kernels for planar dominating problems. . 22

59


	Acknowledgments
	Contents
	Abstract
	Introduction
	Terminology and Preliminaries
	Graph Theory
	Computational Complexity Theory
	NP-Completeness

	Parameterized Complexity
	Fixed-Parameter Tractability
	Kernelization
	Reductions and Parameterized Intractability


	On Parameterized Semitotal Domination
	Domination Problems
	Complexity Status of Semitotal Dominating Set
	Fixed-Parameter Intractability

	A Linear Kernel for Planar Semitotal Domination
	Definitions
	Reduced Graph
	Regions in Planar Graphs

	The Big Picture
	The Reduction Rules
	Reduction Rule I: Shrinking N3(v)
	Reduction Rule II: Shrinking the Size of a Region
	Reduction Rule III: Shrinking Simple Regions

	Bounding the Size of the Kernel
	Bounding the Size of a Region
	Number of Vertices Outside the Decomposition
	Bounding the Number of Regions


	Open Questions and Further Research
	Bibliography
	List of Figures
	List of Tables

		2023-02-14T08:17:12+0100
	Lukas Retschmeier




