Parametrized Complexity

Seminar: Advanced Algorithms

Lukas Retschmeier

Informatik 7 - Theoretical Foundations of Artificial Intelligence Faculty of Informatics
Technical University of Munich
February $3^{\text {rd }}, 2022$

Classical Algorithm Design

■ Usually aims for a ("good") polynomial-time (PTIME) algorithm

- For NP-c problems, we do not expect a PTIME algorithms

■ For Example: 3SAT, 3COLORING, CLIQUE, VERTEX COVER, ...

But ... Can we say anything more about those problems?

Agenda: Our Plan for Today

1. Introduction and Definitions
2. Fixed Parameter (In)Tractibility \& ω-Hardness
3. A Stronger Assumption: (S)ETH and Proving Lower Bounds

Part I
 Introduction and Definitions

Ways to Cope with NP-Complete Problems

Ways to Cope with NP-Complete Problems

We must give up at least one:
■ Exactness: Approximation Algorithms

- Polynomial Runtime: Exact Exponential Time Algorithms
- Generality: FPT Algorithms

Parametrized Complexity

- Parametrized Complexity can be seen as a 2-Dimensional complexity analysis
- Looking deep into the nature of the problem to find some hidden (in)-feasibility
\square Graph of small size?
\square Planar Graph? A Tree?
\square A tree "with a lot of fantasy"?
\square Forbidden Minor?
\square Regular? Degree-Bounded?
\square Bipartite? Chordal? ${ }^{1}$...

[^0]
The Idea Behind: Bar Fight Prevention

The Problem

Owning a Bar is very difficult! You already know that some people might fight so you prevent certain trouble makers from entering. How many do you have to block at least to resolve all conflicts?

The Idea Behind: Bar Fight Prevention

Observation

Removing Fedor, Daniel and Bob resolves all conflicts.
Assuming 1.000 guests: $2^{1000} \approx 1.07 \cdot 10^{301}$ Absolutely infeasible

Restricting the Problem

Question: What happens if you just have a budget of k-people you would like to refuse?

$$
\text { Assuming } \mathbf{1 . 0 0 0} \text { guests and } k=10:=\binom{1000}{10} \approx 2.62 \cdot 10^{23} \text { Still pretty infeasible }
$$

Can we do better?

Observation

Someone fighting with at least $k+1$ other guests must be refused, because otherwise all other $k+1$ guests must be refused, thus already exceeding our budget!

Kernelization I

$\max _{\text {deg }} \leq k$

- Rejecting a guest will now resolve at most k conflicts
\square We are allowed to remove at most k guests each having at most k conflicts
\square If $>k^{2}$ conflicts remaining: No way to resolve all: Refuse Instance

$$
\binom{2 k^{2}}{k} \leq\binom{ 200}{10} \approx 2.24 \cdot 10^{16}
$$

Feasible, but still ...

Note: This technique is called Kernelization.

Kernelization II: Simple Improvement

Observation

If $\operatorname{deg}(v)=1$ refuse $N[v]$ and decrease k

Analysis

- Degree now bounded by
$1<\operatorname{deg}(v)<=k$
$\square\binom{k^{2}}{k} \leq\binom{ 100}{10} \approx 1.73 \cdot 10^{13}$
- Even Better!

A Different Approach: Bounded Search Trees

Crucial Observation

Every conflict must be resolved.
\Rightarrow For every conflicting pair at least one must be refused ${ }^{a}$
${ }^{a}$ This also leads to 2-approximation algorithm! (See: Cormen et al. 2009, Ch. 35.1)

Final Runtime Using Branching

\square We branch into two sub-branches and always decrease \mathbf{k} by one.
Traversing the graph yields $\mathcal{O}(m+n)$ where m is the number of potential conflicts.

- Recall $m \leq \frac{n k}{2}$ after our preciously discussed pre-processing procedure So we finally get:

$$
\mathcal{O}\left(2^{k} \cdot n \cdot k\right)
$$

For $n=1.000$ and $k=10: 2^{10} \cdot 1.000 \cdot 10=10.240 .000$ ©

Parametrized Problem

Main Idea: Instead of expressing the running time as a function $T(n)$ of n ...
...we express it as a function $T(n, k)$ of the input size n and some parameter k of the input.

Definition 1: Parametrized Problem

A parametrized problem is a $L \subseteq \Sigma^{*} \times \mathbb{N}$ (Σ finite fixed alphabet) for an instance $(x, k) \in$ $\Sigma^{*} \times \mathbb{N}$, where k is called the parameter.

Examples for a parameter k :

- size k of a VERTEX COVER
\square size k of a INDEPENDENT SET
- Treewidth k of a given graph

The Class FPT

Definition 2: Fixed-Parameter Tractable

A parametrized problem $L \subseteq \Sigma^{*} \times \mathbb{N}$ is called fixed-parameter tractable (FPT) if there exists an algorithm A (called a fixed-parameter algorithm), a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a constant c such that, given $(x, k) \in \Sigma^{*} \times \mathbb{N}$, the algorithm A correctly decides whether $(x, k) \in L$ in time bounded by $f(k) \cdot|(x, k)|^{c}$. The complexity class containing all fixedparameter tractable problems is called FPT.

Note: We often omit the polynomial-factor and rewrite the running time simply as $\mathcal{O}^{*}(f(k))$

The Class XP

Definition 3: Slice-Wise Polynomial

A parametrized problem $L \subseteq \Sigma^{*} \times \mathbb{N}$ is called slice-wise polynomial (XP) if there exists an algorithm A and two computable functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ such that, given $(x, k) \in \Sigma^{*} \times \mathbb{N}, \mathrm{A}$ correctly decides whether $(x, k) \in L$ in time bounded by $f(k) \cdot|(x, k)|^{g(k)}$. The complexity class containing all slice-wise polynomial problems is called XP.

XP vs FPT

The class XP allows algorithms of the form $f(k) \cdot n^{g(k)}$ in contrast to FPT which tries to fix a polynomial constant c: $f(k) \cdot|(x, k)|^{c}$.
It can be shown: FPT $\subset X P$ by Time Hierarchy Theorem.

Vertex Cover

- The attentive listener might already have noticed that the introductory problem presented equals the NP-Complete VERTEX COVER problem!

MIN VERTEX COVER (Cygan et al. 2015)

```
Input:
Question:
Graph \(G\) and an Integer \(k\)
Does there exist a set \(S\) of vertices of size at most k s.t. \(G-S\) is edgeless?
In other words: Is it possible to cover all edges of \(G\) with at most \(k\) vertices?
```


Outlook: Advanced Algorithmic Techniques

- There exists many techniques to deduce fast FPT algorithms.
- PACE challenges competitors to solve as many very hard instances as possible:
https://pacechallenge.org/

Key Takeaways I

If there would be just three things, you should take away...
\square Problems that are only exponential in a fixed parameter k while polynomial to the input size are called Fixed-Parameter Tractable
\square Uses additional information or properties about a specific instance of a problem.

- There exists many different algorithmic techniques to obtain different FPT algorithms.

Part II: Fixed Parameter (In)Tractability \& w-Hardness Stepping Towards Lower-Bounds for FPT

Parametrized Hardness

By Now: Denote $\omega[1]$ as problems that might not expose a FPT algorithm. Goal: A theory of Intractability for Parametrized Problems

NP-Hardness

Objects of Study	"Classical" $L \subseteq\{0,1\}^{*}$	"Parametrized" $L \subseteq\{0,1\}^{*} \times \mathbb{N}$
Tractability	PTIME	FPT $^{\text {CPI }}$
Hardness Assumption	SAT \notin PTIME	CLIQUE $_{k} \notin$ FPT
Reductions	Poly-Time Karb Reductions	FPT Reductions

Parametrized Reductions

Definition 4: Parametrized Reduction (Cygan et al. 2015, Def 13.1)

Let $A, B \subseteq \Sigma^{*} \times \mathbb{N}$ two parametrized problems. A Parametrized Reduction from A to B is an algorithm that, given an instance (x, k) of A , outputs an instance $\left(x^{\prime}, k^{\prime}\right)$ of B such that
$\square(x, k)$ is a yes instance of A iff $\left(x^{\prime}, k^{\prime}\right)$ is a yes instance of B

- $k^{\prime} \leq g(k)$ for some computable function g
- the running time is $f(k) \cdot|x|^{\mathcal{O}(1)}$ (FPT!)

Parametrized Reductions

Theorem 1: Central Property of Parametrized Reductions (Cygan et al. 2015, Th. 13.2)

If there is a Parametrized Reduction from L to Q and Q is FPT, then L is FPT as well.

Proof: Follows from Definition

\square Suppose Q can be solved in FPTTIME $f(l) \cdot|y|^{c}$ and the reduction $L \leq_{\text {FPT }} Q$ takes time $g(k) \cdot|x|^{d}$

- Then L solves in $\left.\left.f(h(k)) \cdot|g(k) \cdot| x\right|^{d}\right|^{c}$ as I bounded by $l \leq h(k)$ (Property II) and the instance can not be larger then the duration of the reduction
- The final runtime only exponential in k and polynomial in $|\mathrm{x}|$ and hence FPT

Parametrized Reductions

Theorem 2: Transitivity (See Cygan et al. 2015, Th. 13.3)
 If there are Parametrized Reductions from L to Q and from Q to T, then there is a Parametrized Reduction from L to T.

Proof: Omitted. Again directly from the Definition

Towards a New Hierarchy

(Rather Informal) Definition: The class $\omega[1]$
$\omega[1]:=\left[\text { CLIQUE }_{k}\right]^{\text {FPT }}$ (All problems FPT-reducible to CLIQUE $_{k}$)

- Problem Q is $\omega[1]$-hard iff $\operatorname{CLIQUE}_{k}$ reduces to it.
- $\mathrm{FPT} \subseteq \omega[1]$

■ $P=N P \Rightarrow \mathrm{FPT}=\omega[1]$

- If $\omega[1]$-hard problem is FPT then also collapse FPT $=\omega[1]$

Recap: Independent Set

INDEPENDENT SET (See Cygan et al. 2015)

Input:
 Question:
 Graph G and integer k
 Does G has an independent set of size k ?
 In other words: Is there a vertex-set S of size k that are non-adjacent?

A First Trivial Reduction: CLIQUE $_{k} \leq_{\text {FPT }} \mathrm{IS}_{k}$

- It is known: Graph G has IS of size k if and only if G^{-1} has a CLIQUE of size k .
- Therefore: $(G, k) \longrightarrow\left(G^{-1}, k\right)$ directly gives the desired reduction (Even in PTIME!).

Why Standard Reductions Not Always Work: $\mathrm{VC}_{k} \leq_{\mathrm{FPT}^{2} ?} \mathrm{IS}_{k} \prod \prod$

Again, it is known: X is a VC if and only if $G-X$ is an IS.

- Therefore: $(G, k) \longrightarrow(G, n-k)$ gives indeed a reduction, but
- The parameter k is not bounded any more just by k !

Multicolored Clique

MULTICOLORED CLIQUE (PARTITIONED CLIQUE) Cygan et al. 2015, p. 428

Input:
Question:

Graph G, integer k, partition $\left(V_{1}, \ldots V_{k}\right)$
Does G has a k-Clique containing exactly one vertex from each set V_{i} ?

CLIQUE $_{k} \leq_{\text {FPT }}$ MULTICOLORED CLIQUE $_{k}$

$$
\forall i \neq j: u_{i} v_{j} \in E\left(G^{\prime}\right) \Leftrightarrow u v \in E(G)
$$

Claim: G^{\prime} has MULTICOLORED CLIQUE iff G has CLIQUE of size k Proof
\square CLIQUE $_{k} \Rightarrow$ MCLIQUE $_{k}$: Distribute original clique to partitions
\square MCLIQUE \Rightarrow CLIQUE $_{k}$: Project them back to a set of vertices of G
Therefore: $(G, k) \longrightarrow\left(G^{\prime}, k^{\prime}\right)$ is a FPT reduction.

For proofing $\omega[1]$ hardness, it is often useful to start with a MULTICOLORED CLIQUE

- Similar, there is a FPT reduction from

INDEPENDENT SET $\leq_{\text {Fpt }}$ MULTICOLORED INDEPENDENT SET

Dominating Set

DOMINATING SET (Cygan et al. 2015)

$\begin{array}{ll}\text { Input: } & \text { Graph G and Integer k } \\ \text { Question: } & \text { Is there } X \text { of size } k \text { s.t. } N[X]=V(G) \text { ? }\end{array}$
Where we denote $N[X]$ as the close neighborhood of X

Corollary: DOMINATING SET is $\omega[1]$-hard and $\omega[2]$-complete

Intuition About Differences of $\omega[1]$ and $\omega[2]$

Formulating CLIQUE and DOMINATING SET in logical terms ${ }^{2}$
$\square X$ is a CLIQUE iff

$$
\forall_{(\mathrm{u}, \mathrm{v}) \notin \mathrm{G}}: \neg(u \in X \wedge v \in X)
$$

- X is a DOMINATING SET iff

$$
\forall u \exists v:(v \in X \wedge(u, v) \in E(G)) \vee u=v
$$

Recall: The Polynomial Hierarchy also defined via quantifiers. Maybe something similiar applies also in the FPT case?

[^1]Intuition About Differences of $\omega[1]$ and $\omega[2]$

DOMINATING SET

Quick Outlook: Weighted Circuit Satisfiability

WEIGHTED CIRCUIT SATISFIABILITY(WCS) (Cygan et al. 2015)

```
Input:
Question:
Circuit C and Integer k
Is there a satisfying valuation of the input with exactly \(\mathbf{k}\) ones?
```

Definition: $\omega[t]:=$ Problems FPT-Reducible to WCS for circuits of

- Constant Depth and
- Weft at most t .

The Weft of a Circuit is the number of nodes with a fanin >2

It turns out that $F P T \subseteq \omega[1] \subseteq \omega[2] \subseteq \ldots \subseteq X P$ while all these inclusions are strict, if ETH (Next Chapter!) is true.

Summary FPT Reductions ${ }^{3}$

[^2]
Key Takeaways II

If there would be just three things, you should take away...
\square VertexCover $_{k} \in$ FPT, Clique ${ }_{k} \in \omega[1]$ and DominatingSet ${ }_{k} \in \omega[2]$

- The class NP splits up into a whole hierarchy of more [i] classes
- If you get an unknown problem, chances are high to be successful with a MULTICOLORED CLIQUE reduction.

Part III: A Stronger Assumption: The (Strong) Exponential Time Hypothesis Proving Lower Bounds for Subexponential Time

Why We Need a New a Assumption

We already know for the Vertex Cover problem:

1. $2^{n} \cdot \operatorname{poly}(n)$ by brute-forcing all sets
2. $2^{k} \cdot \operatorname{poly}(n)$ by branching (Introduction)

But for example: Planar Vertex Cover can be solved in

1. $2^{\mathcal{O}(\sqrt{n})}$ by a given Tree-Decomposition + Dynamic Programming ${ }^{4}$
[^3]
Fine-Grained Complexity

Sad News: The fundamental assumption $\mathbf{P} \neq \mathbf{N P}$ rules out all attempts for finding a PTIME algorithm for NP-c problems.

Question: Can we at least hope for a Sub-Exponential Time Algorithm for NP-Complete problems?

Solution: A new assumption based again on the Hardness of SAT

Exponential Time Hypothesis

There is $\delta>0$ s.t. 3SAT can not be solved in time $\mathcal{O}\left(2^{\delta n}\right)=\mathcal{O}\left(\left(2^{\delta}\right)^{n}\right)$

Strong Exponential Time Hypothesis

For every $\delta<1$ there is q s.t. qSAT cannot be solved in time $\mathcal{O}\left(2^{\delta n}\right)$

1. $\mathrm{ETH} \Rightarrow 3$ SAT can not beat $2^{\mathcal{O}(n)}$
2. SETH \Rightarrow ETH (Proof: Cygan et al. 2015, Theorem 14.5)
3. ETH is commonly believed, SETH still discussed.

Transfering Lower Bounds by Reductions

Observe the Textbook reduction (e.g. Schardl 2009) from 3SAT \leq VERTEX COVER:

For example given: $\phi=(x \vee y \vee \bar{z}) \wedge(x \vee \bar{y}) \wedge(\bar{x} \vee \overline{z y})$

3SAT \leq VERTEX COVER: Analysis

$$
\left[\begin{array}{c}
\text { Formula } \phi \\
n \text { Variables } \\
m \text { Clauses }
\end{array}\right] \rightsquigarrow\left[\begin{array}{c}
(G, k) \\
2 n+3 m \text { Vertices } \\
n+6 m \text { Edges } \\
k=2 n+m
\end{array}\right]
$$

\#clauses ${ }_{\text {3SAT }}=m=\binom{2 N}{3} \in \mathcal{O}\left(n^{3}\right)$
$\square \Rightarrow$ size of the whole instance $N, M \in \mathcal{O}\left(n^{3}\right)$

Corollary

Assume VERTEX COVER can be solved in time $2^{o(\sqrt[3]{N+M})}$
\Rightarrow 3SAT could be solved in $2^{o(n)}$ by pipelining the reduction. 4 Contradicting ETH

Nice. But can we do better?

Towards a Tight Bound: Sparsification Lemma

Idea: If we tighten $m=\mathcal{O}(n)$ in the input instance, then we would get $2^{o(N+M)}$ by the same (linear) reduction

Outlook: Sparsification Lemma (Impagliazzo 1999)

For all $\epsilon>0$, there is a constant K s.t. we can compute for every formula ϕ in 3CNF with n clauses over k variables an equivalent formula $\bigvee_{t=1}^{t} \psi_{i}$ where each ψ_{i} is in 3CNF and over the same k variables and has $\leq K \cdot k$ clauses. Moreover, $t \leq 2^{\epsilon k}$ and the computation takes $\mathcal{O}\left(2^{\epsilon k} n^{c}\right)$ time

Proof: Omitted, but idea: Branching over a set of variables.

Sketch: Turning Back to Our Reduction

1. Using Sparsification Lemma we can sparsify our kCNF-formula to linear size in clauses with an appropriate ϵ.
2. We apply our reduction from 3SAT \leq VERTEX COVER
3. Total Runtime now lowerly bounded by $2^{o(N+M)}$

More Tight Bounds For Classical Problems

Consequence: Assuming ETH, there is no $2^{o(n)}$ time algorithm for

■ INDEPENDENT SET

- CLIQUE
- DOMINATING SET
- VERTEX COVER
- HAMILTONIAN PATH
- FEEDBACK VERTEX SET

Crucial Consequence for FPT Algorithms

Observation: No $2^{o(n)}$-Time Algorithm \Rightarrow also no $2^{o(k)} \cdot n^{\mathcal{O}(1)}$-Time Algorithm
Consequence: Assuming ETH, there is no $2^{o(k)} \cdot n^{\mathcal{O}(1)}$ time algorithm for

- k-INDEPENDENT SET
- k-CLIQUE
- k-DOMINATING SET

■ k-VERTEX COVER
■ k-HAMILTONIAN PATH

- k-FEEDBACK VERTEX SET

Last Slide: Lower Bounds for $\omega[1]$ hard problems

We can even go further:

Theorem Chen, Eickmeyer, and Flum 2004

Assuming ETH, there is no $f(k) \cdot n^{o(k)}$ algorithm for CLIQUE $_{k}$ for any computable function f

Implying that we can not have any FPT algorithms for

- SET COVER, HITTING SET, CONNECTED DOMINATING SET, PARTIAL VERTEX COVER, ... unless ETH fails.
This closes the cycle back to our $\omega[i]$-hierarchy.

Key Takeaways III

If there would be just three things, you should take away...
■ ETH: $\exists \delta>0$ s.t. 3 SAT can not be solved in time $\mathcal{O}\left(2^{\delta n}\right)$
■ Lower Bounds (under ETH) can be transferred using reductions

- That I thank all of you very much for the attention!

References I

Belbasi, Mahdi and Martin Fürer Martin (2021). Finding All Leftmost Separators of Size $\leq k$. eprint: 2111.02614. URL: https://arxiv.org/pdf/2111.02614.pdf.
Chen, Yijia, Kord Eickmeyer, and Jörg Flum (2004). The exponential time hypothesis and the parameterized clique problem. URL:
http://basics.sjtu.edu.cn/~chen/papers/eth.pdf.
Cormen, Thomas H. et al. (2009). Introduction to Algorithms, 3rd Edition. MIT Press. ISBN: 978-0-262-03384-8. URL: http://mitpress.mit.edu/books/introduction-algorithms.
Cygan, Marek et al. (2015). Parameterized Algorithms. Berlin, Heidelberg: Springer. ISBN: 978-3-319-21275-3.
Impagliazzo Russel;Paturi, Ramamohan (1999). Which Problems Have Strongly Exponential Complexity. URL: https://www.sciencedirect.com/science/ article/pii/S002200000191774X?via\%5C\%3Dihub.

References II

Schardl, TB (2009). Reductions. URL:
http://web.mit.edu/~neboat/www/6.046-fa09/rec8.pdf.
T Würzburg, Universität (2019). Exakte Algorithmen, Vorlesung 9: Lower Bounds. URL: https://wuecampus2.uni-wuerzburg.de/moodle/pluginfile.php/ 1564087/mod_resource/content/3/vl09-part2-printerversion.pdf.

[^0]: ${ }^{1}$ A State-of-the-art collection: https://www.graphclasses.org/

[^1]: ${ }^{2}$ More precisely: Monadic Second-Order-Logic of Graphs

[^2]: ${ }^{3}$ (Comp. Würzburg 2019)

[^3]: ${ }^{4}$ Because $t w(G) \leq \sqrt{n}$ for planar G. Recent 2-Approximation Algorithm see (Belbasi and Martin 2021) Lukas Retschmeier

