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Classical Algorithm Design

� Usually aims for a ("good") polynomial-time (PTIME) algorithm

� For NP-c problems, we do not expect a PTIME algorithms

� For Example: 3SAT, 3COLORING, CLIQUE, VERTEX COVER, ...

But ... Can we say anything more about those problems?
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Agenda: Our Plan for Today

1. Introduction and Definitions

2. Fixed Parameter (In)Tractibility & ω-Hardness

3. A Stronger Assumption: (S)ETH and Proving Lower Bounds
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Part I
Introduction and Definitions
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Ways to Cope with NP-Complete Problems

Solves all Instances

Polynomial Runtime Exact Result

∅
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Ways to Cope with NP-Complete Problems

Solve all Instances

Polynomial Runtime Exact Result

∅

We must give up at least one:

� Exactness: Approximation Algorithms

� Polynomial Runtime: Exact
Exponential Time Algorithms

� Generality: FPT Algorithms
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Parametrized Complexity

� Parametrized Complexity can be seen as a 2-Dimensional complexity analysis
� Looking deep into the nature of the problem to find some hidden (in)-feasibility
� Graph of small size?
� Planar Graph? A Tree?
� A tree "with a lot of fantasy"?
� Forbidden Minor?
� Regular? Degree-Bounded?
� Bipartite? Chordal?1

� ...

1A State-of-the-art collection: https://www.graphclasses.org/
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The Idea Behind: Bar Fight Prevention
The Problem
Owning a Bar is very difficult! You already know that some people might fight so you
prevent certain trouble makers from entering. How many do you have to block at least
to resolve all conflicts?

Daniel GerhardBobAlice

Erik

Fedor

Christos
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The Idea Behind: Bar Fight Prevention

Daniel GerhardBobAlice

Erik

Fedor

Christos

Observation
Removing Fedor, Daniel and Bob resolves all conflicts.

Assuming 1.000 guests: 21000 ≈ 1.07 · 10301 Absolutely infeasible
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Restricting the Problem

Question: What happens if you just have a budget of k-people you would like to refuse?

Daniel GerhardBobAlice

Erik

Fedor

Christos

Assuming 1.000 guests and k = 10: =
(1000

10
)
≈ 2.62 · 1023 Still pretty infeasible
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Can we do better?

Observation
Someone fighting with at least k+ 1 other guests must be refused, because otherwise all
other k + 1 guests must be refused, thus already exceeding our budget!

n1
n2

n3

n4

nk

nk+1

...
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Kernelization I

� maxdeg ≤ k
� Rejecting a guest will now resolve at most k conflicts

� We are allowed to remove at most k guests each having at most k conflicts

� If > k2 conflicts remaining: No way to resolve all: Refuse Instance(2k2

k

)
≤
(200

10
)
≈ 2.24 · 1016

Feasible, but still ...

Note: This technique is called Kernelization.
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Kernelization II: Simple Improvement

Observation

If deg(v) = 1 refuse N [v] and decrease k

N [v]

n1

n2

n3

v

Analysis
� Degree now bounded by

1 < deg(v) <= k

�
(k2

k

)
≤
(100

10
)
≈ 1.73 · 1013

� Even Better!

Lukas Retschmeier Parametrized Complexity 03/02/2022 Page 13/52



A Different Approach: Bounded Search Trees

Crucial Observation
Every conflict must be resolved.
⇒ For every conflicting pair at least one must be refused a

aThis also leads to 2-approximation algorithm! (See: Cormen et al. 2009, Ch. 35.1)

Alice vs. Bob

Bob vs. Christos

...

Alice
Gerhard vs. Daniel

Daniel vs. Erik

...

Christos vs. Fedor

Fail
Christos

OK
Fedor

Bob

Daniel GerhardBobAlice

Erik

Fedor

Christos
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Final Runtime Using Branching

� We branch into two sub-branches and always decrease k by one.

� Traversing the graph yields O(m+ n) where m is the number of potential conflicts.

� Recall m ≤ nk
2 after our preciously discussed pre-processing procedure

So we finally get:

O(2k · n · k)

For n = 1.000 and k = 10: 210 · 1.000 · 10 = 10.240.000
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Parametrized Problem

Main Idea: Instead of expressing the running time as a function T (n) of n...
...we express it as a function T (n, k) of the input size n and some parameter k of the input.

Definition 1: Parametrized Problem

A parametrized problem is a L ⊆ Σ∗ × N (Σ finite fixed alphabet) for an instance (x, k) ∈
Σ∗ × N, where k is called the parameter.

Examples for a parameter k:
� size k of a VERTEX COVER

� size k of a INDEPENDENT SET

� Treewidth k of a given graph
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The Class FPT

Definition 2: Fixed-Parameter Tractable
A parametrized problemL ⊆ Σ∗×N is called fixed-parameter tractable (FPT) if there exists
an algorithm A (called a fixed-parameter algorithm), a computable function f : N→ N and
a constant c such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether
(x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity class containing all fixed-
parameter tractable problems is called FPT.

Note: We often omit the polynomial-factor and rewrite the running time simply as O∗(f(k))
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The Class XP

Definition 3: Slice-Wise Polynomial

A parametrized problem L ⊆ Σ∗×N is called slice-wise polynomial (XP) if there exists an
algorithm A and two computable functions f, g : N→ N such that, given (x, k) ∈ Σ∗×N, A
correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|g(k). The complexity
class containing all slice-wise polynomial problems is called XP.

XP vs FPT

The class XP allows algorithms of the form f(k) ·ng(k) in contrast to FPT which tries to fix
a polynomial constant c: f(k) · |(x, k)|c.
It can be shown: FPT ⊂ XP by Time Hierarchy Theorem.
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Vertex Cover

� The attentive listener might already have noticed that the introductory problem presented
equals the NP-Complete VERTEX COVER problem!

MIN VERTEX COVER (Cygan et al. 2015)

Input:
Question:

Graph G and an Integer k
Does there exist a set S of vertices of size at most k s.t. G− S is
edgeless?

In other words: Is it possible to cover all edges of G with at most k
vertices?
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Outlook: Advanced Algorithmic Techniques

� There exists many techniques to deduce
fast FPT algorithms.

� PACE challenges competitors to solve
as many very hard instances as
possible:
https://pacechallenge.org/
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Key Takeaways I

If there would be just three things, you should take away...

� Problems that are only exponential in a fixed parameter k while polynomial to the input
size are called Fixed-Parameter Tractable

� Uses additional information or properties about a specific instance of a problem.

� There exists many different algorithmic techniques to obtain different FPT algorithms.
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Part II: Fixed Parameter (In)Tractability & w-Hardness
Stepping Towards Lower-Bounds for FPT
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Parametrized Hardness

By Now: Denote ω[1] as problems that might not expose a FPT algorithm.
Goal: A theory of Intractability for Parametrized Problems

NP-Hardness W[1]-Hardness

Objects of Study "Classical" L ⊆ {0, 1}∗ "Parametrized" L ⊆ {0, 1}∗ × N
Tractability PTIME FPT
Hardness Assumption SAT /∈ PTIME CLIQUEk /∈ FPT
Reductions Poly-Time Karb Reductions FPT Reductions
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Parametrized Reductions

Definition 4: Parametrized Reduction (Cygan et al. 2015, Def 13.1)

Let A,B ⊆ Σ∗ × N two parametrized problems. A Parametrized Reduction from A to B is
an algorithm that, given an instance (x, k) of A, outputs an instance (x′, k′) of B such that

� (x, k) is a yes instance of A iff (x′, k′) is a yes instance of B

� k′ ≤ g(k) for some computable function g

� the running time is f(k) · |x|O(1) (FPT!)
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Parametrized Reductions

Theorem 1: Central Property of Parametrized Reductions (Cygan et al. 2015,
Th. 13.2)

If there is a Parametrized Reduction from L to Q and Q is FPT, then L is FPT as well.

Proof: Follows from Definition
� Suppose Q can be solved in FPTTIME f(l) · |y|c and the reduction L ≤FPT Q takes time
g(k) · |x|d

� Then L solves in f(h(k)) · |g(k) · |x|d|c as l bounded by l ≤ h(k) (Property II) and the
instance can not be larger then the duration of the reduction

� The final runtime only exponential in k and polynomial in |x| and hence FPT �
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Parametrized Reductions

Theorem 2: Transitivity (See Cygan et al. 2015, Th. 13.3)

If there are Parametrized Reductions from L to Q and from Q to T, then there is a
Parametrized Reduction from L to T.

Proof: Omitted. Again directly from the Definition
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Towards a New Hierarchy

(Rather Informal) Definition: The class ω[1]

ω[1] := [CLIQUEk]FPT (All problems FPT-reducible to CLIQUEk)

� Problem Q is ω[1]-hard iff CLIQUEk reduces to it.

� FPT ⊆ ω[1]
� P = NP ⇒ FPT = ω[1]
� If ω[1]-hard problem is FPT then also collapse FPT = ω[1]
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Recap: Independent Set

INDEPENDENT SET (See Cygan et al. 2015)

Input:
Question:

Graph G and integer k
Does G has an independent set of size k?

In other words: Is there a vertex-set S of size k that are
non-adjacent?

n2
n3

n4
n5

n1

n7

n6
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A First Trivial Reduction: CLIQUEk ≤FPT ISk

� It is known: Graph G has IS of size k if and only if G−1 has a CLIQUE of size k.

� Therefore: (G, k) −→ (G−1, k) directly gives the desired reduction (Even in PTIME!).
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Why Standard Reductions Not Always Work: VCk ≤FPT?? ISk

� Again, it is known: X is a VC if and only if G−X is an IS.

� Therefore: (G, k) −→ (G,n− k) gives indeed a reduction, but

� The parameter k is not bounded any more just by k!
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Multicolored Clique

MULTICOLORED CLIQUE (PARTITIONED CLIQUE) Cygan et al. 2015, p. 428

Input:
Question:

Graph G, integer k, partition (V1, ...Vk)
Does G has a k-Clique containing exactly one vertex from each
set Vi?
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CLIQUEk ≤FPT MULTICOLORED CLIQUEk

∀i 6= j : uivj ∈ E(G′)⇔ uv ∈ E(G)

Claim: G′ has MULTICOLORED CLIQUE iff G has CLIQUE of size k
Proof
� CLIQUEk ⇒ MCLIQUEk: Distribute original clique to partitions
� MCLIQUE⇒ CLIQUEk: Project them back to a set of vertices of G
Therefore: (G, k) −→ (G′, k′) is a FPT reduction.
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Notes

� For proofing ω[1] hardness, it is often useful to start with a MULTICOLORED CLIQUE

� Similar, there is a FPT reduction from
INDEPENDENT SET ≤FPT MULTICOLORED INDEPENDENT SET
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Dominating Set

DOMINATING SET (Cygan et al. 2015)

Input:
Question:

Graph G and Integer k
Is there X of size k s.t. N [X] = V (G)?

Where we denote N [X] as the close neighborhood of X

Corollary: DOMINATING SET is ω[1]-hard and ω[2]-complete
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Intuition About Differences of ω[1] and ω[2]
Formulating CLIQUE and DOMINATING SET in logical terms 2

� X is a CLIQUE iff
∀(u,v)/∈G : ¬(u ∈ X ∧ v ∈ X)

� X is a DOMINATING SET iff

∀u∃v : (v ∈ X ∧ (u, v) ∈ E(G)) ∨ u = v

Recall: The Polynomial Hierarchy also defined via quantifiers.
Maybe something similiar applies also in the FPT case?

2More precisely: Monadic Second-Order-Logic of Graphs
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Intuition About Differences of ω[1] and ω[2]

CLIQUE

∧

¬∧

x1

¬∧

x2

¬∧

x3

¬∧

x4

¬∧

x5

DOMINATING SET

∧

∨

x1

∨

x2

∨

x3

∨

x4

∨

x5
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Quick Outlook: Weighted Circuit Satisfiability

WEIGHTED CIRCUIT SATISFIABILITY(WCS) (Cygan et al. 2015)

Input:
Question:

Circuit C and Integer k
Is there a satisfying valuation of the input with exactly k ones?

Definition: ω[t] := Problems FPT-Reducible to WCS for circuits of
� Constant Depth and

� Weft at most t.
The Weft of a Circuit is the number of nodes with a fanin > 2

It turns out that FPT ⊆ ω[1] ⊆ ω[2] ⊆ ... ⊆ XP while all these inclusions are strict, if ETH
(Next Chapter!) is true.
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Summary FPT Reductions3

3(Comp. Würzburg 2019)
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Key Takeaways II

If there would be just three things, you should take away...

� VertexCoverk ∈ FPT, Cliquek ∈ ω[1] and DominatingSetk ∈ ω[2]
� The class NP splits up into a whole hierarchy of more [i] classes

� If you get an unknown problem, chances are high to be successful with a
MULTICOLORED CLIQUE reduction.
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Part III: A Stronger Assumption: The (Strong) Exponential Time Hypothesis
Proving Lower Bounds for Subexponential Time
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Why We Need a New a Assumption

We already know for the Vertex Cover problem:

1. 2n · poly(n) by brute-forcing all sets

2. 2k · poly(n) by branching (Introduction)

But for example: Planar Vertex Cover can be solved in

1. 2O(
√
n) by a given Tree-Decomposition + Dynamic Programming 4

4Because tw(G) ≤
√
n for planar G. Recent 2-Approximation Algorithm see (Belbasi and Martin 2021)

Lukas Retschmeier Parametrized Complexity 03/02/2022 Page 41/52



Fine-Grained Complexity

Sad News: The fundamental assumption P 6= NP rules out all attempts for finding a
PTIME algorithm for NP-c problems.

Question: Can we at least hope for a Sub-Exponential Time Algorithm for NP-Complete
problems?

PTIME
nc 2 7√n

2
7√
knO(1)

2 3√n
2

3√
knO(1)

SUB-EXPTIME
2
√
n

2
√
knO(1)

2n n!
EXPTIME

Solution: A new assumption based again on the Hardness of SAT
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ETH and SETH

Exponential Time Hypothesis

There is δ > 0 s.t. 3SAT can not be solved in time O(2δn) = O((2δ)n)

Strong Exponential Time Hypothesis

For every δ < 1 there is q s.t. qSAT cannot be solved in time O(2δn)

1. ETH⇒ 3SAT can not beat 2O(n)

2. SETH⇒ ETH (Proof: Cygan et al. 2015, Theorem 14.5)

3. ETH is commonly believed, SETH still discussed.
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Transfering Lower Bounds by Reductions

Observe the Textbook reduction (e.g. Schardl 2009) from 3SAT ≤ VERTEX COVER:

For example given: φ = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (x ∨ zy)
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3SAT ≤ VERTEX COVER: Analysis Formula φ
n Variables
m Clauses

 


(G, k)
2n+ 3m Vertices
n+ 6m Edges
k = 2n+m


� #clauses3SAT = m =

(2N
3
)
∈ O(n3)

� ⇒ size of the whole instance N,M ∈ O(n3)

Corollary

Assume VERTEX COVER can be solved in time 2o( 3√N+M)

⇒ 3SAT could be solved in 2o(n) by pipelining the reduction. � Contradicting ETH

Nice. But can we do better?
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Towards a Tight Bound: Sparsification Lemma

Idea: If we tighten m = O(n) in the input instance, then we would get 2o(N+M) by the same
(linear) reduction

Outlook: Sparsification Lemma (Impagliazzo 1999)

For all ε > 0, there is a constant K s.t. we can compute for every formula φ in 3CNF with n
clauses over k variables an equivalent formula

∨t
t=1 ψi where each ψi is in 3CNF and over

the same k variables and has ≤ K · k clauses. Moreover, t ≤ 2εk and the computation
takes O(2εknc) time

Proof: Omitted, but idea: Branching over a set of variables.
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Sketch: Turning Back to Our Reduction

1. Using Sparsification Lemma we can sparsify our kCNF-formula to linear size in
clauses with an appropriate ε.

2. We apply our reduction from 3SAT ≤ VERTEX COVER

3. Total Runtime now lowerly bounded by 2o(N+M)
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More Tight Bounds For Classical Problems

Consequence: Assuming ETH, there is no 2o(n) time algorithm for

� INDEPENDENT SET

� CLIQUE

� DOMINATING SET

� VERTEX COVER

� HAMILTONIAN PATH

� FEEDBACK VERTEX SET
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Crucial Consequence for FPT Algorithms

Observation: No 2o(n)-Time Algorithm⇒ also no 2o(k) · nO(1)-Time Algorithm

Consequence: Assuming ETH, there is no 2o(k) · nO(1) time algorithm for

� k-INDEPENDENT SET

� k-CLIQUE

� k-DOMINATING SET

� k-VERTEX COVER

� k-HAMILTONIAN PATH

� k-FEEDBACK VERTEX SET
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Last Slide: Lower Bounds for ω[1] hard problems

We can even go further:

Theorem Chen, Eickmeyer, and Flum 2004

Assuming ETH, there is no f(k) · no(k) algorithm for CLIQUEk for any computable function
f

Implying that we can not have any FPT algorithms for
� SET COVER, HITTING SET, CONNECTED DOMINATING SET, PARTIAL VERTEX COVER, ...
unless ETH fails.
This closes the cycle back to our ω[i]-hierarchy.
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Key Takeaways III

If there would be just three things, you should take away...

� ETH: ∃δ > 0 s.t. 3SAT can not be solved in time O(2δn)
� Lower Bounds (under ETH) can be transferred using reductions

� That I thank all of you very much for the attention!
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